Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The cooperative interaction distance measure has been proposed as a novel law pertaining to dialectics of nature, and has been extensively carried out in the design of functional nanomaterials. However, the temporal and spatial dimensions are akin to yin and yang, and thus temporal regulation needs to be accounted for when implementing the above-mentioned principle. Here, we summarize recent advances in temporally and spatially regulated materials and devices. We showcase the temporal regulation of organic semiconductors for organic photovoltaics (OPVs) using the example of exciton lifetime manipulation. As an example of spatial regulation, we consider the distribution of charge carriers in core–shell quantum dot (QD) nanocrystals for modulating their optical properties. Long exciton lifetime can in principle increase the exciton diffussion length, which is desiable for high-efficiency large-area OPV devices. Spatially regulated QDs are highly valuable emitters for light-emitting applications. We aim to show that cooperative spatio-temporal regulation of nanomaterils is of vital importance to the development of functional devices.
Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.
Eaton, S. W.; Fu, A.; Wong, A. B.; Ning, C. -Z.; Yang, P. D. Semiconductor nanowire lasers. Nat. Rev. Mater. 2016, 1, 16028.
Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; Malomed, B. A.; Mihalache, D. Bose–Einstein condensation: Twenty years after. Rom. Rep. Phys. 2015, 67, 5–50.
Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J. M. J.; Marchetti, F. M.; Szymańska, M. H.; André, R.; Staehli, J. L. et al. Bose–Einstein condensation of exciton polaritons. Nature 2006, 443, 409–414.
Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.
Min, W.; Freudiger, C. W.; Lu, S. J.; Xie, X. S. Coherent nonlinear optical imaging: Beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 2011, 62, 507–530.
Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. -Y. S.; McCord-Maughon, D. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999, 398, 51–54.
Xing, J. -F.; Zheng, M. -L.; Duan, X. -M. Two-photon polymerization microfabrication of hydrogels: An advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 2015, 44, 5031–5039.
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.
Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.
Dong, H.; Sun, L. -D.; Yan, C. -H. Energy transfer in lanthanide upconversion studies for extended optical applications. Chem. Soc. Rev. 2015, 44, 1608–1634.
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238.
Zhang, Q. S.; Li, B.; Huang, S. P.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 2014, 8, 326–332.
Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H. H.; Chen, R. F.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 2014, 26, 7931–7958.
Su, B.; Guo, W.; Jiang, L. Learning from nature: Binary cooperative complementary nanomaterials. Small 2015, 11, 1072–1096.
Liu, M. J.; Jiang, L. Dialectics of nature in materials science: Binary cooperative complementary materials. Sci. China Mater. 2016, 59, 239–246.
Huang, J. -H.; Li, K. -C.; Chien, F. -C.; Hsiao, Y. -S.; Kekuda, D.; Chen, P. L.; Lin, H. -C.; Ho, K. -C.; Chu, C. -W. Correlation between exciton lifetime distribution and morphology of bulk heterojunction films after solvent annealing. J. Phys. Chem. C 2010, 114, 9062–9069.
Xiao, L. X.; Chen, Z. J.; Qu, B.; Luo, J. X.; Kong, S.; Gong, Q. H.; Kido, J. Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 2011, 23, 926–952.
Chen, X. -W.; Choy, W. C. H.; Liang, C. J.; Wai, P. K. A.; He, S. L. Modifications of the exciton lifetime and internal quantum efficiency for organic light-emitting devices with a weak/strong microcavity. Appl. Phys. Lett. 2007, 91, 221112.
Mikhnenko, O. V.; Blom, P. W. M.; Nguyen, T. -Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 2015, 8, 1867–1888.
Smith, M. B.; Michl, J. Singlet fission. Chem. Rev. 2010, 110, 6891–6936.
Musser, A. J.; Maiuri, M.; Brida, D.; Cerullo, G.; Friend, R. H.; Clark, J. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 2015, 137, 5130– 5139.
Monahan, N.; Zhu, X. -Y. Charge transfer-mediated singlet fission. Annu. Rev. Phys. Chem. 2015, 66, 601–618.
Xia, J. L.; Sanders, S. N.; Cheng, W.; Low, J. Z.; Liu, J. P.; Campos, L. M.; Sun, T. L. Singlet fission: Progress and prospects in solar cells. Adv. Mater. , in press, DOI: 10.1002/adma.201601652.
Singh, S.; Jones, W. J.; Siebrand, W.; Stoicheff, B. P.; Schneider, W. G. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys. 1965, 42, 330–342.
Hanna, M. C.; Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510.
Congreve, D. N.; Lee, J.; Thompson, N. J.; Hontz, E.; Yost, S. R.; Reusswig, P. D.; Bahlke, M. E.; Reineke, S.; van Voorhis, T.; Baldo, M. A. External quantum efficiency above 100% in a singlet-exciton-fission–based organic photovoltaic cell. Science 2013, 340, 334–337.
Thompson, N. J.; Congreve, D. N.; Goldberg, D.; Menon, V. M.; Baldo, M. A. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon. Appl. Phys. Lett. 2013, 103, 263302.
Pazos, L. M.; Lee, J. M.; Kirch, A.; Tabachnyk, M.; Friend, R. H.; Ehrler, B. A silicon-singlet fission parallel tandem solar cell exceeding 100% external quantum efficiency. 2015, arXiv: 1512.07466.
Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, DOI: 10.1126/science.aad1920.
Tabachnyk, M.; Ehrler, B.; Gélinas, S.; Böhm, M. L.; Walker, B. J.; Musselman, K. P.; Greenham, N. C.; Friend, R. H.; Rao, A. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 2014, 13, 1033–1038.
Thompson, N. J.; Wilson, M. W. B.; Congreve, D. N.; Brown, P. R.; Scherer, J. M.; Bischof, T. S.; Wu, M. F.; Geva, N.; Welborn, M.; van Voorhis, T. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 2014, 13, 1039–1043.
Wan, Y.; Guo, Z.; Zhu, T.; Yan, S. X.; Johnson, J.; Huang, L. B. Cooperative singlet and triplet exciton transport in tetracene crystals visualized by ultrafast microscopy. Nat. Chem. 2015, 7, 785–792.
Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.
Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.
Pietryga, J. M.; Park, Y. -S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.
Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. -S.; Fukumura, D.; Jain, R. K. et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 2013, 12, 445–451.
Cao, H. J.; Ma, J. L.; Huang, L.; Qin, H. Y.; Meng, R. Y.; Li, Y.; Peng, X. G. Design and synthesis of antiblinking and antibleaching quantum dots in multiple colors via wave function confinement. J. Am. Chem. Soc. 2016, 138, 15727–15735.
Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-II core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.
Chen, C. -Y.; Cheng, C. -T.; Lai, C. -W.; Hu, Y. -H.; Chou, P. -T.; Chou, Y. -H.; Chiu, H. -T. Type-II CdSe/CdTe/ZnTe (core–shell–shell) quantum dots with cascade band edges: The separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer. Small 2005, 1, 1215–1220.
Qin, H. Y.; Niu, Y.; Meng, R. Y.; Lin, X.; Lai, R. C.; Fang, W.; Peng, X. G. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: Nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 2014, 136, 179–187.
Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.
Deng, R. R.; Qin, F.; Chen, R. F.; Huang, W.; Hong, M. H.; Liu, X. G. Temporal full-colour tuning through non-steadystate upconversion. Nat. Nanotechnol. 2015, 10, 237–242.