AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview

Helmholtz Institute UlmHelmholtzstraße 11Ulm89081Germany
Karlsruhe Institute of Technology (KIT)PO Box 3640Karlsruhe76021Germany
Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, via Fossato di MortaraFerrara44121Italy

Present address: Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Show Author Information

Graphical Abstract

Abstract

This paper offers a comprehensive overview on the role of nanostructures in the development of advanced anode materials for application in both lithium and sodium-ion batteries. In particular, this review highlights the differences between the two chemistries, the critical effect of nanosize on the electrode performance, as well as the routes to exploit the inherent potential of nanostructures to achieve high specific energy at the anode, enhance the rate capability, and obtain a long cycle life. Furthermore, it gives an overview of nanostructured sodium- and lithium-based anode materials, and presents a critical analysis of the advantages and issues associated with the use of nanotechnology.

References

1

Feynman, R. P. There's plenty of room at the bottom. Caltech Eng. Sci. 1960, 23, 22-36.

2

Toumey, C. Reading feynman into nanotechnology: A text for a new science. Techné 2008, 12, 133-168.

3

Taniguchi, N. On the basic concept of "nano-technology". In Proceedings of the International Conference on Production Engineering Part Ⅱ; Japan Society of Precision Engineering: Tokyo, 1974; pp 18-23.

4

Drexler, K. E. Engines of creation 2.0. : The Coming Era of Nanotechnology; Anchor Books: United States, 1986.

5

Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236-244.

6

Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162-163.

7

Buzea, C.; Pacheco, I. Nanomaterials and their classification. In EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials; Shukla, A. K., Ed.; Springer: India, 2017; pp 3-45.

8

Ebbensen, T. W. Carbon Nanotubes. Annu. Rev. Mater. Sci. 1994, 24, 235-264.

9

Aleklett, K.; Höök, M.; Jakobsson, K.; Lardelli, M.; Snowden, S.; Söderbergh, B. The peak of the oil age—Analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 2010, 38, 1398-1414.

10

De Almeida, P.; Silva, P. D. Timing and future consequences of the peak of oil production. Futures 2011, 43, 1044-1055.

11

Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513-1522.

12

Hall, P. J.; Bain, E. J. Energy-storage technologies and electricity generation. Energy Policy 2008, 36, 4352-4355.

13

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167-1176.

14

Scrosati, B. Recent advances in lithium ion battery materials. Electrochim. Acta 2000, 45, 2461-2466.

15

Balbuena, P. B.; Wang, Y. X. Lithium-Ion Batteries: Solid-Electrolyte Interphase; Imperial College Press: London, 2004.

16

Wakihara, M.; Yamamoto, O. Lithium Ion Batteries: Fundamentals and Performance; Wiley-VCH: New York, 1998.

17

Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272-288.

18

Tarascon, J. M. Key challenges in future Li-battery research. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 2010, 368, 3227-3241.

19

Risacher, F.; Fritz, B. Origin of salts and brine evolution of Bolivian and Chilean salars. Aquat. Geochem. 2009, 15, 123-157.

20

Grosjeana, C.; Miranda, P. M.; Perrina, M.; Poggi, P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sust. Energ. Rev. 2012, 16, 1735-1744.

21

Yaksic, A.; Tilton, J. E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185-194.

22

Tarascon, J. M. Is lithium the new gold? Nat. Chem. 2010, 2, 510.

23

Abraham, K. M. Intercalation positive electrodes for rechargeable sodium cells. Solid State Ionics 1982, 7, 199-212.

24

Delmas, C.; Braconnier, J. J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3-4, 165-169.

25

West, K.; Zachau-Christiansen, B.; Jacobsen, T.; Skaarup, S. Solid-state sodium cells—An alternative to lithium cells? J. Power Sources 1989, 26, 341-345.

26

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.

27

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

28

Palomares, V.; Casas-Cabanas, M.; Castillo-Martínez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312-2337.

29

Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168-177.

30

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. , Int. Ed. 2015, 54, 3431-3448.

31

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.

32

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

33

Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 2003, 150, A133-A139.

34

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188-1194.

35

Huang, H.; Yin, S. C.; Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 2001, 4, A170-A172.

36

Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147-152.

37

Kant, R.; Kaur, J.; Singh, M. B. Nanoelectrochemistry in India. In Electrochemistry: Volume 12 Nanoelectrochemistry; Wadhawan, J. D.; Compton, R. G., Eds.; The Royal Society of Chemistry: Cambridge, 2013; pp 336-378.

38

Manthiram, A.; Vadivel Murugan, A.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 2008, 1, 621-638.

39

Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909-7937.

40

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

41

Balaya, P.; Bhattacharyya, A. J.; Jamnik, J.; Zhukovskii, Y. F.; Kotomin, E. A.; Maier, J. Nano-ionics in the context of lithium batteries. J. Power Sources 2006, 159, 171-178.

42

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. , Int. Ed. 2008, 47, 2930-2946.

43

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-92.

44

Patey, T. J.; Hintennach, A.; La Mantia, F.; Novák, P. Electrode engineering of nanoparticles for lithium-ion batteries—Role of dispersion technique. J. Power Sources 2009, 189, 590-593.

45

Selim, R.; Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 1974, 121, 1457-1459.

46

Harry, K. J.; Liao, X. X.; Parkinson, D. Y.; Minor, A. M.; Balsara, N. P. Electrochemical deposition and stripping behavior of lithium metal across a rigid block copolymer electrolyte membrane. J. Electrochem. Soc. 2015, 162, A2699-A2706.

47

Wenzel, S.; Metelmann, H.; Raiß, C.; Dürr, A. K.; Janek, J.; Adelhelm, P. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 2013, 243, 758-765.

48

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3-4, 171-174.

49

Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74-80.

50

Garcia, B.; Farcy, J.; Pereira-Ramos, J. P.; Baffier, N. Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc. 1997, 144, 1179-1184.

51

Gabrisch, H.; Yazami, R.; Fultz, B. Hexagonal to cubic spinel transformation in lithiated cobalt oxide. J. Electrochem. Soc. 2004, 151, A891-A897.

52

Tournadre, F.; Croguennec, L.; Saadoune, I.; Carlier, D.; Shao-Horn, Y.; Willmann, P.; Delmas, C. On the mechanism of the P2-Na0.70CoO2→O2-LiCoO2 exchange reaction—Part Ⅰ: Proposition of a model to describe the P2-O2 transition. J. Solid State Chem. 2004, 177, 2790-2802.

53

Tournadre, F.; Croguennec, L.; Willmann, P.; Delmas, C. On the mechanism of the P2-Na0.70CoO2→O2-LiCoO2 exchange reaction—Part Ⅱ: An in situ X-ray diffraction study. J. Solid State Chem. 2004, 177, 2803-2809.

54

Antolini, E. LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 2004, 170, 159-171.

55

Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2014, 2, 132-154.

56

Delmas, C.; Fouassier, C.; Hagenmuller, P. Structural classification and properties of the layered oxides. Phys. B+C 1980, 99, 81-85.

57

Lei, Y. C.; Li, X.; Liu, L.; Ceder, G. Synthesis and stoichiometry of different layered sodium cobalt oxides. Chem. Mater. 2014, 26, 5288-5296.

58

Kubota, K.; Yabuuchi, N.; Yoshida, H.; Dahbi, M.; Komaba, S. Layered oxides as positive electrode materials for Na-ion batteries. MRS Bull. 2014, 39, 416-422.

59

Shibata, T.; Fukuzumi, Y.; Kobayashi, W.; Moritomo, Y. Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci. Rep. 2015, 5, 9006.

60

Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: Cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J. Nanotechnol. 2015, 6, 1016-1055.

61

McCloskey, B. D.; Garcia, J. M.; Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li-O2 and Na-O2 batteries. J. Phys. Chem. Lett. 2014, 5, 1230-1235.

62

Hasa, I.; Dou, X. W.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B. A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte. J. Power Sources 2016, 310, 26-31.

63

Kim, H.; Hong, J.; Park, Y. -U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534-541.

64

Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. , Int. Ed. 2014, 53, 10169-10173.

65

Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-principles study of alkali metal-graphite intercalation compounds. J. Power Sources 2013, 243, 585-587.

66

Zhu, Z. Q.; Cheng, F. Y.; Hu, Z.; Niu, Z. Q.; Chen, J. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. J. Power Sources 2015, 293, 626-634.

67

Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. -Y.; Park, M. -S.; Yoon, W. -S.; Kang, K. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 2015, 8, 2963-2969.

68

Gotoh, K.; Ishikawa, T.; Shimadzu, S.; Yabuuchi, N.; Komaba, S.; Takeda, K.; Goto, A.; Deguchi, K.; Ohki, S.; Hashi, K. et al. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power Sources 2013, 225, 137-140.

69

Bommier, C.; Surta, T. W; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888-5892.

70

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859-3867.

71

Stevens, D. A.; Dahn, J. R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803-A811.

72

Buiel, E.; Dahn, J. R. Li-insertion in hard carbon anode materials for Li-ion batteries. Electrochim. Acta 1999, 45, 121-130.

73

Thomas, P.; Billaud, D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta 2002, 47, 3303-3307.

74

Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271-1273.

75

Bommier, C.; Ji, X. L. Recent development on anodes for Na-ion batteries. Isr. J. Chem. 2015, 55, 486-507.

76

Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183-197.

77

Tang, K.; White, R. J.; Mu, X. K.; Titirici, M. M.; Van Aken, P. A.; Maier, J. Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem 2012, 5, 400-403.

78

Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873-877.

79

Candelaria, S. L.; Shao, Y. Y.; Zhou, W.; Li, X. L.; Xiao, J.; Zhang, J. G.; Wang, Y.; Liu, J.; Li, J. H.; Cao, G. Z. Nanostructured carbon for energy storage and conversion. Nano Energy 2012, 1, 195-220.

80

Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2, 638-654.

81

DiLeo, R. A.; Castiglia, A.; Ganter, M. J.; Rogers, R. E.; Cress, C. D.; Raffaelle, R. P.; Landi, B. J. Enhanced capacity and rate capability of carbon nanotube based anodes with titanium contacts for lithium ion batteries. ACS Nano 2010, 4, 6121-6131.

82

Matsushita, T.; Ishii, Y.; Kawasaki, S. Sodium ion battery anode properties of empty and C60-inserted single-walled carbon nanotubes. Mater. Express 2013, 3, 30-36.

83

Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. -C.; Wang, C. S. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254-3264.

84

Deng, D.; Lee, J. Y. One-step synthesis of polycrystalline carbon nanofibers with periodic dome-shaped interiors and their reversible lithium-ion storage properties. Chem. Mater. 2007, 19, 4198-4204.

85

Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Simonsen, J.; Ji, X. L. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 2013, 1, 10662-10666.

86

Li, W. H.; Zeng, L. C.; Yang, Z. Z.; Gu, L.; Wang, J. Q.; Liu, X. W.; Cheng, J. X.; Yu, Y. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale 2014, 6, 693-698.

87

Liu, Y.; Fan, F. F.; Wang, J. W.; Liu, Y.; Chen, H. L.; Jungjohann, K. L.; Xu, Y. H.; Zhu, Y. J.; Bigio, D.; Zhu, T. et al. In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. Nano Lett. 2014, 14, 3445-3452.

88

Xiong, Z. L.; Yun, Y.; Jin, H. -J. Applications of carbon nanotubes for lithium ion battery anodes. Materials 2013, 6, 1138-1158.

89

Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590-593.

90

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271-279.

91

Xu, C. Y.; Shi, X. M.; Ji, A.; Shi, L.; Zhou, C.; Cui, Y. Q. Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS One 2015, 10, e0144842.

92

Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160.

93

Vargas C., O. A.; Caballero, Á.; Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 2012, 4, 2083-2092.

94

Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136-3142.

95

Hassoun, J.; Bonaccorso, F.; Agostini, M.; Angelucci, M.; Betti, M. G.; Cingolani, R.; Gemmi, M.; Mariani, C.; Panero, S.; Pellegrini, V. et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 2014, 14, 4901-4906.

96

Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202-208.

97

Raccichini, R.; Varzi, A.; Wei, D.; Passerini, S. Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 2017, 29, 1603421.

98

Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15, 2107-2111.

99

Hong, K. L.; Qie, L.; Zeng, R.; Yi, Z. Q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q. -J.; Zhang, W. -X. et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 12733-12738.

100

Su, X.; Wu, Q. L.; Zhan, X.; Wu, J.; Wei, S. Y.; Guo, Z. H. Advanced titania nanostructures and composites for lithium ion battery. J. Mater. Sci. 2012, 47, 2519-2534.

101

Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007-15028.

102

Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818-837.

103

Xu, Y.; Lotfabad, E. M.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973-8975.

104

Wu, L. M.; Buchholz, D.; Bresser, D.; Gomes Chagas, L.; Passerini, S. Anatase TiO2 nanoparticles for high power sodium-ion anodes. J. Power Sources 2014, 251, 379-385.

105

Liu, Y.; Yang, Y. F. Recent progress of TiO2-based anodes for Li ion batteries. J. Nanomater. 2016, 2016, 8123652.

106

Lunell, S.; Stashans, A.; Ojamae, L.; Lindström, H.; Hagfeldt, A. Li and Na diffusion in TiO2 from quantum chemical theory versus electrochemical experiment. J. Am. Chem. Soc. 1997, 119, 7374-7380.

107

Jiang, C. H.; Honma, I.; Kudo, T.; Zhou, H. S. Nanocrystalline rutile TiO2 electrode for high-capacity and high-rate lithium storage. Electrochem. Solid-State Lett. 2007, 10, A127-A129.

108

Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B. J.; Song, J.; Kim, J. Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim. Acta 2013, 90, 112-118.

109

Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

110

Wu, L. M.; Moretti, A.; Buchholz, D.; Passerini, S.; Bresser, D. Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochim. Acta 2016, 203, 109-116.

111

Su, D. W.; Dou, S. X.; Wang, G. X. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022-6029.

112

Hong, Z. S.; Zhou, K. Q.; Zhang, J. W.; Huang, Z. G.; Wei, M. D. Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties. J. Mater. Chem. A 2015, 3, 17412-17416.

113

González, J. R.; Alcántara, R.; Nacimiento, F.; Ortiz, G. F; Tirado, J. L. Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm 2014, 16, 4602-4609.

114

Yang, Z. G.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D. H.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. J. Power Sources 2009, 192, 588-598.

115

Bresser, D.; Paillard, E.; Binetti, E.; Krueger, S.; Striccoli, M.; Winter, M.; Passerini, S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources 2012, 206, 301-309.

116

Bresser, D.; Oschmann, B.; Tahir, M. N.; Mueller, F.; Lieberwirth, I.; Tremel, W.; Zentel, R.; Passerini, S. Carbon-coated anatase TiO2 nanotubes for Li- and Na-ion anodes. J. Electrochem. Soc. 2014, 162, A3013-A3020.

117

Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560-2565.

118

Ferg, E.; Gummow, R. J.; de Kock, A.; Thackeray, M. M. Spinel anodes for lithium-ion batteries. J. Electrochem. Soc. 1994, 141, L147-L150.

119

Mahmoud, A.; Amarilla, J. M.; Lasri, K.; Saadoune, I. Influence of the synthesis method on the electrochemical properties of the Li4Ti5O12 spinel in Li-half and Li-ion full-cells. A systematic comparison. Electrochim. Acta 2013, 93, 163-172.

120

Martha, S. K.; Haik, O.; Borgel, V.; Zinigrad, E.; Exnar, I.; Drezen, T.; Minersc, J. H.; Aurbach, D. Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application. J. Electrochem. Soc. 2011, 158, A790-A797.

121

Yang, L. X.; Gao, L. J. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery. J. Alloys Compd. 2009, 485, 93-97.

122

Huang, J. J.; Jiang, Z. Y. The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery. Electrochim. Acta 2008, 53, 7756-7759.

123

Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.; Wu, Y. P.; Takamura, T. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources 2007, 174, 1109-1112.

124

Wang, J.; Liu, X. -M.; Yang, H.; Shen, X. D. Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method. J. Alloys Compd. 2011, 509, 712-718.

125

Raja, M. W.; Mahanty, S.; Kundu, M.; Basu, R. N. Synthesis of nanocrystalline Li4Ti5O12 by a novel aqueous combustion technique. J. Alloys Compd. 2009, 468, 258-262.

126

Nakahara, K.; Nakajima, R.; Matsushima, T.; Majima, H. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J. Power Sources 2003, 117, 131-136.

127

Borghols, W. J. H.; Wagemaker, M.; Lafont, U.; Kelder, E. M.; Mulder, F. M. Size effects in the Li4+xTi5O12 spinel. J. Am. Chem. Soc. 2009, 131, 17786-17792.

128

Wagemaker, M.; Mulder, F. M. Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 2013, 46, 1206-1215.

129

Prakash, A. S.; Manikandan, P.; Ramesha, K.; Sathiya, M.; Tarascon, J. M.; Shukla, A. K. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem. Mater. 2010, 22, 2857-2863.

130

Zhao, L.; Pan, H. -L.; Hu, Y. -S.; Li, H.; Chen, L. -Q. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chinese Phys. B 2012, 21, 028201.

131

Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.; Hu, Y. -S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nat. Commun. 2013, 4, 1870.

132

Mei, Y. N.; Huang, Y. H.; Hu, X. L. Nanostructured Ti-based anode materials for Na-ion batteries. J. Mater. Chem. A 2016, 4, 12001-12013.

133

Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J. M.; Palacín, M. R. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109-4111.

134

Wang, W.; Yu, C. J.; Lin, Z. S.; Hou, J. G.; Zhu, H. M.; Jiao, S. Q. Microspheric Na2Ti3O7 consisting of tiny nanotubes: An anode material for sodium-ion batteries with ultrafast charge-discharge rates. Nanoscale 2013, 5, 594-599.

135

Rudola, A.; Saravanan, K.; Devaraj, S.; Gong, H.; Balaya, P. Na2Ti6O13: A potential anode for grid-storage sodium-ion batteries. Chem. Commun. 2013, 49, 7451-7453.

136

Li, H.; Fei, H. L.; Liu, X.; Yang, J.; Wei, M. D. In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chem. Commun. 2015, 51, 9298-9300.

137

Goward, G. R.; Taylor, N. J.; Souza, D. C. S.; Nazar, L. F. The true crystal structure of Li17M4 (M = Ge, Sn, Pb)-revised from Li22M5. J. Alloys Compd. 2001, 329, 82-91.

138

Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444-11502.

139

Kamali, A. R.; Fray, D. J. Tin-based materials as advanced anode materials for lithium ion batteries: A review. Rev. Adv. Mater. Sci. 2011, 27, 14-24.

140

Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31-50.

141

Wang, J. W.; Liu, X. H.; Mao, S. X.; Huang, J. Y. Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. Nano Lett. 2012, 12, 5897-5902.

142

Chevrier, V. L.; Ceder, G. Challenges for Na-ion negative electrodes. J. Electrochem. Soc. 2011, 158, A1011-A1014.

143

Obrovac, M. N.; Christensen, L.; Le, D. B; Dahn, J. R. Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 2007, 154, A849-A855.

144

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805-20811.

145

Hassoun, J.; Panero, S.; Scrosati, B. Metal alloy electrode configurations for advanced lithium-ion batteries. Fuel Cells 2009, 9, 277-283.

146

Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 2007, 19, 2336-2340.

147

Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 2008, 20, 3169-3175.

148

Lee, D. -J.; Park, J. -W.; Hasa, I.; Sun, Y. -K.; Scrosati, B.; Hassoun, J. Alternative materials for sodium ion-sulphur batteries. J. Mater. Chem. A 2013, 1, 5256-5261.

149

Elia, G. A.; Ulissi, U.; Jeong, S.; Passerini, S.; Hassoun, J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ. Sci. 2016, 9, 3210-3220.

150

Hasa, I.; Hassoun, J.; Sun, Y. -K.; Scrosati, B. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. ChemPhysChem 2014, 15, 2152-2155.

151

Kang, T. -W.; Lim, H. -S.; Park, S. -J.; Sun, Y. -K.; Suh, K. -D. Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries. Mater. Chem. Phys. 2017, 185, 6-13.

152

Dai, R. L.; Sun, W. W.; Wang, Y. Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: Metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries. Electrochim. Acta 2016, 217, 123-131.

153

Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093-3100.

154

Dai, K. H.; Zhao, H.; Wang, Z. H.; Song, X. Y.; Battaglia, V.; Liu, G. Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries. J. Power Sources 2014, 263, 276-279.

155

Xun, S. D.; Song, X. Y.; Battaglia, V.; Liu, G. Conductive polymer binder-enabled cycling of pure tin nanoparticle composite anode electrodes for a lithium-ion battery. J. Electrochem. Soc. 2013, 160, A849-A855.

156

Hassoun, J.; Derrien, G.; Panero, S.; Scrosati, B. The role of the morphology in the response of Sb-C nanocomposite electrodes in lithium cells. J. Power Sources 2008, 183, 339-343.

157

Hasa, I.; Passerini, S.; Hassoun, J. A rechargeable sodium-ion battery using a nanostructured Sb-C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015, 5, 48928-48934.

158

Ko, Y. N.; Kang, Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 2014, 50, 12322-12324.

159

Hasa, I.; Passerini, S.; Hassoun, J. Characteristics of an ionic liquid electrolyte for sodium-ion batteries. J. Power Sources 2016, 303, 203-207.

160

Dailly, A.; Ghanbaja, J.; Willmann, P.; Billaud, D. Lithium insertion into new graphite-antimony composites. Electrochim. Acta 2003, 48, 977-984.

161

Elia, G. A.; Panero, S.; Savoini, A.; Scrosati, B.; Hassoun, J. Mechanically milled, nanostructured Sn-C composite anode for lithium ion battery. Electrochim. Acta 2013, 90, 690-694.

162

Park, C. -M.; Yoon, S.; Lee, S. -I.; Kim, J. -H.; Jung, J. -H.; Sohn, H. -J. High-rate capability and enhanced cyclability of antimony-based composites for lithium rechargeable batteries. J. Electrochem. Soc. 2007, 154, A917-A920.

163

He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255-1262.

164

Ellis, L. D.; Hatchard, T. D.; Obrovac, M. N. Reversible insertion of sodium in tin. J. Electrochem. Soc. 2012, 159, A1801-A1805.

165

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. -J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113-143.

166

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.

167

Ma, D. L.; Cao, Z. Y.; Hu, A. M. Si-based anode materials for li-ion batteries: A mini review. Nano-Micro Lett. 2014, 6, 347-358.

168

Zhang, M.; Zhang, T. F.; Ma, Y. F.; Chen, Y. S. Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Mater. 2016, 4, 1-14.

169

Scrosati, B.; Hassoun, J.; Sun, Y. -K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287-3295.

170

Roy, P.; Srivastava, S. K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454-2484.

171

Simon, P.; Tarascon, J. -M. The positive attributes of nanomaterials to the field of electrochemical energy storage[Stockage électrochimique de I'énergie]. Actual. Chim. 2009, 327-328, 87-97.

172

Sethuraman, V. A.; Nguyen, A.; Chon, M. J.; Nadimpalli, S. P. V.; Wang, H.; Abraham, D. P.; Bower, A. F.; Shenoy, V. B.; Guduru, P. R. Stress evolution in composite silicon electrodes during lithiation/delithiation. J. Electrochem. Soc. 2013, 160, A739-A746.

173

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.

174

Lin, Y. -M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. 2012, 48, 7268-7270.

175

Munaò, D.; Valvo, M.; Van Erven, J.; Kelder, E. M.; Hassoun, J.; Panero, S. Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 2012, 22, 1556-1561.

176

Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75-A79.

177

Leonard, S. S.; Cohen, G. M.; Kenyon, A. J.; Schwegler-Berry, D.; Fix, N. R.; Bangsaruntip, S.; Roberts, J. R. Generation of reactive oxygen species from silicon nanowires. Environ. Health Insights 2014, 8, 21-29.

178

Marinaro, M.; Weinberger, M.; Wohlfahrt-Mehrens, M. Toward pre-lithiatied high areal capacity silicon anodes for lithium-ion batteries. Electrochim. Acta 2016, 206, 99-107.

179

Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370-3374.

180

Zhou, M.; Li, X. L.; Wang, B.; Zhang, Y. B.; Ning, J.; Xiao, Z. C.; Zhang, X. H.; Chang, Y. H.; Zhi, L. J. High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 2015, 15, 6222-6228.

181

Hassoun, J.; Jung, H. G.; Lee, D. J.; Park, J. B.; Amine, K.; Sun, Y. -K.; Scrosati, B. A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries. Nano Lett. 2012, 12, 5775-5779.

182
New Battery Anode with Four Times the Capacity of Conventional Materials; XG Sciences, Inc. : Lansing, MI, USA. www.xgsciences.com/blog/2013/04/12/new-battery-anode/ (accessed Jan 10, 2017).
183
Amprius Demonstrates a Revolutionary New Tool for Roll-to-Roll Manufacturing of High-Energy Batteries; Amprius, Inc. Amprius, Inc. : Sunnyvale, CA, USA. www.amprius.com/news/news_amprius_20160523.htm (accesses Jan 10, 2017).
184

Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem. Commun. 2012, 21, 65-68.

185

Ellis, L. D.; Wilkes, B. N.; Hatchard, T. D.; Obrovac, M. N. In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J. Electrochem. Soc. 2014, 161, A416-A421.

186

Jung, S. C.; Jung, D. S.; Choi, J. W.; Han, Y. K. Atom-level understanding of the sodiation process in silicon anode material. J. Phys. Chem. Lett. 2014, 5, 1283-1288.

187

Mali, A.; Petric, A. EMF measurements of the Na-Si system. J. Phase Equilibria Diffus. 2013, 34, 453-458.

188

Park, C. -M.; Kim, J. -H.; Kim, H.; Sohn, H. -J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141.

189

Fuller, C. S.; Severiens, J. C. Mobility of impurity ions in germanium and silicon. Phys. Rev. 1954, 96, 21-24.

190

Kim, C. H.; Im, H. S.; Cho, Y. J.; Jung, C. S.; Jang, D. M.; Myung, Y.; Kim, H. S.; Back, S. H.; Lim, Y. R.; Lee, C. -W. et al. High-yield gas-phase laser photolysis synthesis of germanium nanocrystals for high-performance photodetectors and lithium ion batteries. J. Phys. Chem. C 2012, 116, 26190-26196.

191

Yuan, F. -W.; Yang, H. -J.; Tuan, H. -Y. Alkanethiol-passivated Ge nanowires as high-performance anode materials for lithium-ion batteries: The role of chemical surface functionalization. ACS Nano 2012, 6, 9932-9942.

192

Abel, P. R.; Lin, Y. M.; De Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J. Phys. Chem. C 2013, 117, 18885-18890.

193

Nitta, N.; Yushin, G. High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles. Part. Part. Syst. Charact. 2014, 31, 317-336.

194

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633-4636.

195

Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.

196

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045-3049.

197

Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.

198

Armand, M.; Tarascon, J. -M. Building better batteries. Nature 2008, 451, 652-657.

199

Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, 170-192.

200

Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828-18836.

201

Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876-15887.

202

Hasa, I.; Verrelli, R.; Hassoun, J. Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery. Electrochim. Acta 2015, 173, 613-618.

203

Ming, J.; Ming, H.; Yang, W. J.; Kwak, W. -J.; Park, J. -B.; Zheng, J. W.; Sun, Y. K. A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv. 2015, 5, 8793-8800.

204

Lu, Y. C.; Ma, C. Z.; Alvarado, J.; Kidera, T.; Dimov, N.; Meng, Y. S.; Okada, S. Electrochemical properties of tin oxide anodes for sodium-ion batteries. J. Power Sources 2015, 284, 287-295.

205

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.

206

Hong, I.; Angelucci, M.; Verrelli, R.; Betti, M. G.; Panero, S.; Croce, F.; Mariani, C.; Scrosati, B.; Hassoun, J. Electrochemical characteristics of iron oxide nanowires during lithium-promoted conversion reaction. J. Power Sources 2014, 256, 133-136.

207

Verrelli, R.; Scrosati, B.; Sun, Y. K.; Hassoun, J. Stable, high voltage Li0.85Ni0.46Cu0.1Mn1.49O4 spinel cathode in a lithium-ion battery using a conversion-type CuO anode. ACS Appl. Mater. Interfaces 2014, 6, 5206-5211.

208

Ponrouch, A.; Cabana, J.; Dugas, R.; Slackc, J. L.; Palacın, M. R. Electroanalytical study of the viability of conversion reactions as energy storage mechanisms. RSC Adv. 2014, 4, 35988-35996.

209

Débart, A.; Dupont, L.; Poizot, P.; Leriche, J. -B.; Tarascon, J. -M. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Electrochem. Soc. 2001, 148, A1266-A1274.

210

Wang, F.; Yu, H. -C.; Chen, M. -H.; Wu, L. J.; Pereira, N.; Thornton, K.; Van der Ven, A.; Zhu, Y. M.; Amatucci, G. G.; Graetz, J. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 2012, 3, 1201.

211

Lin, F.; Nordlund, D.; Weng, T. -C.; Zhu, Y.; Ban, C. M.; Richards, R. M.; Xin, H. L. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 2014, 5, 3358.

212

Su, L. W.; Zhou, Z.; Shen, P. W. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N‑containing carbon nanosheets: Origin of Li storage capacity, J. Phys. Chem. C 2012, 116, 23974-23980.

213

Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895-904.

214

Bresser, D.; Passerini, S.; Scrosati, B. Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ. Sci. 2016, 9, 3348-3367.

215

Bresser, D.; Paillard, E.; Kloepsch, R.; Krueger, S.; Fiedler, M.; Schmitz, R.; Baither, D.; Winter, M.; Passerini, S. Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes. Adv. Energy Mater. 2013, 3, 513-523.

216

Lin, L.; Pan, Q. M. ZnFe2O4@C/graphene nanocomposites as excellent anode materials for lithium batteries. J. Mater. Chem. A 2015, 3, 1724-1729.

217

Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847-2848.

218

Huang, B.; Tai, K. P.; Zhang, M. G.; Xiao, Y. R.; Dillon, S. J. Comparative study of Li and Na electrochemical reactions with iron oxide nanowires. Electrochim. Acta 2014, 118, 143-149.

219

Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Phys. 2013, 15, 2945-2953.

220

Koo, B.; Chattopadhyay, S.; Shibata, T.; Prakapenka, V. B.; Johnson, C. S.; Rajh, T.; Shevchenko, E. V. Intercalation of sodium ions into hollow iron oxide nanoparticles. Chem. Mater. 2013, 25, 245-252.

221

Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 2014, 50, 5057-5060.

222

Liu, Y.; Zhang, B. H.; Xiao, S. Y.; Liu, L. L.; Wen, Z. B.; Wu, Y. P. A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance. Electrochim. Acta 2014, 116, 512-517.

223

Wang, Y.; Su, D. W.; Wang, C. Y.; Wang, G. X. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem. Commun. 2013, 29, 8-11.

224

Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131-3133.

225

Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

226

Su, D. W.; Dou, S. X.; Wang, G. X. WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192-4195.

227

Zhu, C. B.; Mu, X. K.; Van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152-2156.

228

Ryu, W. -H.; Jung, J. -W.; Park, K.; Kim, S. -J.; Kim, I. -D. Vine-like MoS2 anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale 2014, 6, 10975-10981.

229

Jung, H. -G.; Hassoun, J.; Park, J. -B.; Sun, Y. -K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579-585.

230

Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. Lithium-air battery: Promise and challenges. J. Phys. Chem. Lett. 2010, 1, 2193-2203.

231

Freunberger, S. A.; Chen, Y. H.; Peng, Z. Q.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 2011, 133, 8040-8047.

232

Hartmann, P.; Bender, C. L.; Sann, J.; Dürr, A. K.; Jansen, M.; Janek, J.; Adelhelm, P. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. Phys. Chem. Chem. Phys. 2013, 15, 11661-11672.

233

Elia, G. A.; Hasa, I.; Hassoun, J. Characterization of a reversible, low-polarization sodium-oxygen battery. Electrochim. Acta 2016, 191, 516-520.

234

Das, S. K.; Lau, S.; Archer, L. A. Sodium-oxygen batteries: A new class of metal-air batteries. J. Mater. Chem. A 2014, 2, 12623-12629.

235

Hassoun, J.; Scrosati, B. A high-performance polymer tin sulfur lithium ion battery. Angew. Chem., Int. Ed. 2010, 49, 2371-2374.

236

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. -M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2011, 11, 19-29.

237

Mueller, F.; Bresser, D.; Chakravadhanula, V. S. K.; Passerini, S. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries. J. Power Sources 2015, 299, 398-402.

238

Wu, L.; Lu, H. Y.; Xiao, L. F.; Qian, J. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A tin(Ⅱ) sulfide-carbon anode material based on combined conversion and alloying reactions for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 16424-16428.

Nano Research
Pages 3942-3969
Cite this article:
Hasa I, Hassoun J, Passerini S. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano Research, 2017, 10(12): 3942-3969. https://doi.org/10.1007/s12274-017-1513-7

928

Views

91

Crossref

N/A

Web of Science

90

Scopus

0

CSCD

Altmetrics

Received: 09 January 2017
Revised: 27 January 2017
Accepted: 03 February 2017
Published: 18 May 2017
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017
Return