Sort:
Open Access Research Article Issue
Current collectors based on multiwalled carbon-nanotubes and few-layer graphene for enhancing the conversion process in scalable lithium-sulfur battery
Nano Research 2023, 16(6): 8433-8447
Published: 05 March 2023
Abstract PDF (31.3 MB) Collect
Downloads:125

We investigated herein the morphological, structural, and electrochemical features of electrodes using a sulfur (S)-super P carbon (SPC) composite (i.e., S@SPC-73), and including few-layer graphene (FLG), multiwalled carbon nanotubes (MWCNTs), or a mixture of them within the current collector design. Furthermore, we studied the effect of two different electron-conducting agents, that is, SPC and FLG, used in the slurry for the electrode preparation. The supports have high structural crystallinity, while their morphologies are dependent on the type of material used. Cyclic voltammetry (CV) shows a reversible and stable conversion reaction between Li and S with an activation process upon the first cycle leading to the decrease of cell polarization. This activation process is verified by electrochemical impedance spectroscopy (EIS) with a decrease of the resistance after the first CV scan. Furthermore, CV at increasing scan rates indicates a Li+ diffusion coefficient (D) ranging between 10−9 and 10−7 cm2·s−1 in the various states of charge of the cell, and the highest D value for the electrodes using FLG as electron-conducting agent. Galvanostatic tests performed at constant current of C/5 (1 C = 1675 mA·gS−1) show high initial specific capacity values, which decrease during the initial cycles due to a partial loss of the active material, and subsequently increase due to the activation process. All the electrodes show a Coulombic efficiency higher than 97% upon the initial cycles, and a retention strongly dependent on the electrode formulation. Therefore, this study suggests a careful control of the electrode in terms of current collector design and slurry composition to achieve good electrode morphology, mechanical stability, and promising electrochemical performance in practical Li-S cells.

Research Article Issue
Physical activation of graphene: An effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries
Nano Research 2019, 12(4): 759-766
Published: 22 February 2019
Abstract PDF (2.8 MB) Collect
Downloads:27

Graphene nanosheets are a promising scaffold to accommodate S for achieving high performance Li/S battery. Nanosheet activation is used as a viable strategy to induce a micropore system and further improve the battery performance. Accordingly, chemical activation methods dominate despite the need of multiple stages, which slow down the process in addition to making them tiresome. Here, a three-dimensional (3D) N-doped graphene specimen was physically activated with CO2, a clean and single step process, and used for the preparation of a sulfur composite (A-3DNG/S). The A-3DNG/S composite exhibited outstanding electrochemical properties such as an excellent rate capability (1, 000 mAh·g-1 at 2C), high reversible capacity and cycling stability (average capacity ~ 800 mAh·g-1 at 1C after 200 cycles), values which exceed those measured in chemically activated graphene. Therefore, these results support the use of physical activation as a simple and efficient alternative to improve the performance of carbons as an S host for high-performance Li-S batteries.

Review Article Issue
Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview
Nano Research 2017, 10(12): 3942-3969
Published: 18 May 2017
Abstract PDF (4.1 MB) Collect
Downloads:96

This paper offers a comprehensive overview on the role of nanostructures in the development of advanced anode materials for application in both lithium and sodium-ion batteries. In particular, this review highlights the differences between the two chemistries, the critical effect of nanosize on the electrode performance, as well as the routes to exploit the inherent potential of nanostructures to achieve high specific energy at the anode, enhance the rate capability, and obtain a long cycle life. Furthermore, it gives an overview of nanostructured sodium- and lithium-based anode materials, and presents a critical analysis of the advantages and issues associated with the use of nanotechnology.

Total 3