Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries

Xiujuan Wei1Chunjuan Tang1,2Qinyou An1()Mengyu Yan1Xuanpeng Wang1Ping Hu1Xinyin Cai1Liqiang Mai1,3 ()
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China
Department of Mathematics and PhysicsLuoyang Institute of Science and TechnologyLuoyang471023China
Department of ChemistryUniversity of California, BerkeleyCalifornia94720USA
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Sodium-ion batteries (SIBs) have great promise for sustainable and economical energy-storage applications. Nevertheless, it is a major challenge to develop anode materials with high capacity, high rate capability, and excellent cycling stability for them. In this study, FeSe2 clusters consisting of nanorods were synthesized by a facile hydrothermal method, and their sodium-storage properties were investigated with different electrolytes. The FeSe2 clusters delivered high electrochemical performance with an ether-based electrolyte in a voltage range of 0.5–2.9 V. A high discharge capacity of 515 mAh·g–1 was obtained after 400 cycles at 1 A·g–1, with a high initial columbic efficiency of 97.4%. Even at an ultrahigh rate of 35 A·g–1, a specific capacity of 128 mAh·g–1 was achieved. Using calculations, we revealed that the pseudocapacitance significantly contributed to the sodium-ion storage, especially at high current rates, leading to a high rate capability. The high comprehensive performance of the FeSe2 clusters makes them a promising anode material for SIBs.

Electronic Supplementary Material

Download File(s)
nr-10-9-3202_ESM.pdf (1.7 MB)

References

1

Mahmood, N.; Zhang, C. Z.; Liu, F.; Zhu, J. H.; Hou, Y. L. Hybrid of Co3Sn2@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode. ACS Nano 2013, 7, 10307–10318.

2

Xu, Y. H.; Zhu, Y. J.; Liu, Y. H.; Wang, C. S. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv. Energy Mater. 2013, 3, 128–133.

3

Wu, C.; Maier, J.; Yu, Y. Sn-based nanoparticles encapsulated in a porous 3D graphene network: Advanced anodes for high-rate and long life Li-ion batteries. Adv. Funct. Mater. 2015, 25, 3488–3496.

4

Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119–4124.

5

Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.

6

Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

7

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

8

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805–20811.

9

Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144.

10

Liang, L. Y.; Xu, Y.; Wang, C. L.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Zhu, M.; Zhao, H. P.; Lei, Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2954–2962.

11

Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

12

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

13

Saravanan, K.; Mason, C. W.; Rudola, A.; Wong, K. H.; Balaya, P. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444–450.

14

Dong, Y. F.; Li, S.; Zhao, K. N.; Han, C. H.; Chen, W.; Wang, B. L.; Wang, L.; Xu, B. A.; Wei, Q. L.; Zhang, L. et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy Environ. Sci. 2015, 8, 1267–1275.

15

Barpanda, P.; Oyama, G.; Nishimura, S.; Chung, S. C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.

16

You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.

17

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.

18

Zhao, J.; Zhao, L. W.; Chihara, K.; Okada, S.; Yamaki, J. I.; Matsumoto, S.; Kuze, S.; Nakane, K. Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries. J. Power Sources 2013, 244, 752–757.

19

Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028.

20

Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacin, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583.

21

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

22

Liu, Y. C.; Zhang, N.; Jiao, L. F.; Tao, Z. L.; Chen, J. Ultrasmall Sn nanoparticles embedded in carbon as highperformance anode for sodium-ion batteries. Adv. Funct. Mater. 2015, 25, 214–220.

23

Abel, P. R.; Lin, Y. M.; de Souza, T.; Chou, C. Y.; Gupta, A.; Goodenough, J. B.; Hwang, G. S.; Heller, A.; Mullins, C. B. Nanocolumnar germanium thin films as a high-rate sodiumion battery anode material. J. Phys. Chem. C 2013, 117, 18885–18890.

24

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 125, 4731–4734.

25

He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255–1262.

26

Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as highperformance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.

27

Lu, Y. C.; Ma, C. Z.; Alvarado, J.; Dimov, N.; Meng, Y. S.; Okada, S. Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 16971–16977.

28

Sun, W. P.; Rui, X. H.; Yang, D.; Sun, Z. Q.; Li, B.; Zhang, W. Y.; Zong, Y.; Madhavi, S.; Dou, S. X.; Yan, Q. Y. Twodimensional tin disulfide nanosheets for enhanced sodium storage. ACS Nano 2015, 9, 11371–11381.

29

Liu, X.; Zhang, K.; Lei, K. X.; Li, F. J.; Tao, Z. L.; Chen, J. Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 2016, 9, 198–206.

30

Wang, H.; Lan, X. Z.; Jiang, D. L.; Zhang, Y.; Zhong, H. H.; Zhang, Z. P.; Jiang, Y. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J. Power Sources 2015, 283, 187–194.

31

Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.

32

Zhang, Z. A.; Yang, X.; Fu, Y.; Du, K. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sources 2015, 296, 2–9.

33

Xiong, X. Q.; Luo, W.; Hu, X. L.; Chen, C. J.; Long, Q.; Hou, D. F.; Huang, Y. H. Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci. Rep. 2015, 5, 9254.

34

Li, Y. F.; Liang, Y. L.; Hernandez, F. C. R.; Yoo, H. D.; An, Q. Y.; Yao, Y. Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 2015, 15, 453–461.

35

Wang, W. J.; Pan, X.; Liu, W. Q.; Zhang, B.; Chen, H. W.; Fang, X. Q.; Yao, J. X.; Dai, S. Y. FeSe2 films with controllable morphologies as efficient counter electrodes for dye-sensitized solar cells. Chem. Commun. 2014, 50, 2618–2620.

36

Yuan, B. X.; Luan, W. L.; Tu, S. T. One-step synthesis of cubic FeS2 and flower-like FeSe2 particles by a solvothermal reduction process. Dalton Trans. 2012, 41, 772–776.

37

Shi, W. D.; Zhang, X.; Che, G. B.; Fan, W. Q.; Liu, C. B. Controlled hydrothermal synthesis and magnetic properties of three-dimensional FeSe2 rod clusters and microspheres. Chem. Eng. J. 2013, 215–216, 508–516.

38

Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.

39

Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.

40

Mai, L. Q.; An, Q. Y.; Wei, Q. L.; Fei, J. Y.; Zhang, P. F.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Wen, W.; Xu, L. Nanoflakesassembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity. Small 2014, 10, 3032–3037.

41

Han, C. H.; Pi, Y. Q.; An, Q. Y.; Mai, L. Q.; Xie, J. L.; Xu, X.; Xu, L.; Zhao, Y. L.; Niu, C. J.; Khan, A. M. et al. Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett. 2012, 12, 4668–4673.

42

Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

43

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

44

Yu, P. F.; Li, C. L.; Guo, X. X. Sodium storage and pseudocapacitive charge in textured Li4Ti5O12 thin films. J. Phys. Chem. C 2014, 118, 10616–10624.

45

Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 2016, 10, 1529–1538.

46

Son, S. B.; Yersak, T. A.; Piper, D. M.; Kim, S. C.; Kang, C. S.; Cho, J. S.; Suh, S. S.; Kim, Y. U.; Oh, K. H.; Lee, S. H. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 2014, 4, 1300961.

47

Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.

48

Liu, J.; Wen, Y. R.; Wang, Y.; van Aken, P. A.; Maier, J.; Yu, Y. Carbon-encapsulated pyrite as stable and earthabundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 2014, 26, 6025–6030.

49

Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.

50

Wei, X. J.; An, Q. Y.; Wei, Q. L.; Yan, M. Y.; Wang, X. P.; Li, Q. D.; Zhang, P. F.; Wang, B. L.; Mai, L. Q. A bowknot-like RuO2 quantum dots@V2O5 cathode with largely improved electrochemical performance. Phys. Chem. Chem. Phys. 2014, 16, 18680–18685.

51

Wei, X. J.; Tang, C. J.; Wang, X. P.; Zhou, L.; Wei, Q. L.; Yan, M. Y.; Sheng, J. Z.; Hu, P.; Wang, B. L.; Mai, L. Q. Copper silicate hydrate hollow spheres constructed by nanotubes encapsulated in reduced graphene oxide as longlife lithium-ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 26572–26578.

52

Wei, Q. L.; An, Q. Y.; Chen, D. D.; Mai, L. Q.; Chen, S. Y.; Zhao, Y. L.; Hercule, K. M.; Xu, L.; Khan, A. M.; Zhang, Q. J. One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett. 2014, 14, 1042–1048.

53

Gao, J.; Lowe, M. A.; Kiya, Y.; Abru?a, H. D. Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in-situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 2011, 115, 25132–25137.

54

Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium–air battery. Nat. Chem. 2012, 4, 579–585.

55

Wang, X. P.; Niu, C. J.; Meng, J. S.; Hu, P.; Xu, X. M.; Wei, X. J.; Zhou, L.; Zhao, K. N.; Luo, W.; Yan, M. Y. et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodiumion battery electrode with ultrahigh cycling stability. Adv. Energy Mater. 2015, 5, 1500716.

56

Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: An intercalation based anode for sodium-ion battery applications. J. Mater. Chem. A 2013, 1, 2653–2662.

57

Ko, Y. N.; Choi, S. H.; Kang, Y. C. Hollow cobalt selenide microspheres: Synthesis and application as anode materials for Na-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 6449–6456.

Nano Research
Pages 3202-3211
Cite this article:
Wei X, Tang C, An Q, et al. FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Research, 2017, 10(9): 3202-3211. https://doi.org/10.1007/s12274-017-1537-z
Metrics & Citations  
Article History
Copyright
Return