Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A novel metal-free bulk nanocatalyst, S–N-codoped hollow carbon nanosphere/graphene aerogel (SNC-GA-1000), has been successfully fabricated using a facile and clean solid ion transition route. In this method, ZnS is used as the hard template and S source, while polydopamine acts as a reducing agent and carbon source. At a high annealing temperature, Zn metal is reduced and evaporates, leaving only free S vapor to diffuse into the carbon layer. Interestingly, the as-obtained SNC-GA-1000 exhibits much higher catalytic activity in an organic reduction reaction than unloaded bare S–N-codoped carbon nanospheres. Hydrothermal reduction of the graphene oxide sheets loaded with ZnS@polydopamine core–shell nanospheres (ZnS@PDA) affords a three-dimensional bulk graphene aerogel. Although nanosized catalysts exhibit high catalytic activities, their subsequent separation is not always satisfactory, making post-treatment difficult. This approach achieves a trade-off between activity and separability. More importantly, due to the 3D structural nature, such bulk and handheld nanocatalysts can be easily separated and recycled.
Yao, W.; Li, F.-L.; Li, H.-X.; Lang, J.-P. Fabrication of hollow Cu2O@CuO-supported Au–Pd alloy nanoparticles with high catalytic activity through the galvanic replacement reaction. J. Mater. Chem. A 2015, 3, 4578–4585.
Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.
Xi, J. B.; Xiao, J. W.; Xiao, F.; Jin, Y. X.; Dong, Y.; Jing, F.; Wang, S. Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci. Rep. 2016, 6, 21904.
Zhang, Z. Y.; Sun, T.; Chen, C.; Xiao, F.; Gong, Z.; Wang, S. Bifunctional nanocatalyst based on three-dimensional carbon nanotube–graphene hydrogel supported Pd nanoparticles: One-pot synthesis and its catalytic properties. ACS Appl. Mater. Interfaces 2014, 6, 21035–21040.
Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.
Akhter, T.; Islam, M. M.; Faisal, S. N.; Haque, E.; Minett, A. I.; Liu, H. K.; Konstantinov, K.; Dou, S. X. Self-assembled N/S codoped flexible graphene paper for high performance energy storage and oxygen reduction reaction. ACS Appl. Mater. Interfaces 2016, 8, 2078–2087.
Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Müllen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.
Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.
Zhuo, L. H.; Wu, Y. Q.; Wang, L. Y.; Ming, J.; Yu, Y. C.; Zhang, X. B.; Zhao, F. Y. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. J. Mater. Chem. A 2013, 1, 3954–3960.
Su, C. L.; Tandiana, R.; Balapanuru, J.; Tang, W.; Pareek, K.; Nai, C. T.; Hayashi, T.; Loh, K. P. Tandem catalysis of amines using porous graphene oxide. J. Am. Chem. Soc. 2015, 137, 685–690.
Zhang, Z. Y.; Xiao, F.; Xi, J. B.; Sun, T.; Xiao, S.; Wang, H. R.; Wang, S.; Liu, Y. Q. Encapsulating Pd nanoparticles in double-shelled graphene@carbon hollow spheres for excellent chemical catalytic property. Sci. Rep. 2014, 4, 4053.
Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.
Jin, Y. X.; Xi, J. B.; Zhang, Z. Y.; Xiao, J. W.; Xiao, F.; Qian, L. H.; Wang, S. An ultra-low Pd loading nanocatalyst with efficient catalytic activity. Nanoscale 2015, 7, 5510–5515.
Cai, S. F.; Wang, D. S.; Niu, Z. Q.; Li, Y. D. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese J. Catal. 2013, 34, 1964–1974.
Rong, H. P.; Cai, S. F.; Niu, Z. Q.; Li, Y. D. Composition- dependent catalytic activity of bimetallic nanocrystals: AgPd-catalyzed hydrodechlorination of 4-chlorophenol. ACS Catal. 2013, 3, 1560–1563.
Rong, H. P.; Niu, Z. Q.; Zhao, Y. F.; Cheng, H.; Li, Z.; Ma, L.; Li, J.; Wei, S. Q.; Li, Y. D. Structure evolution and associated catalytic properties of Pt-Sn bimetallic nanoparticles. Chem. —Eur. J. 2015, 21, 12034–12041.
Yang, Z.; Yao, Z.; Li, G. F.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.; Chen, X. A.; Huang, S. M. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211.
Chaudhari, N. K.; Song, M. Y.; Yu, J. S. Heteroatom-doped highly porous carbon from human urine. Sci. Rep. 2014, 4, 5221.
Kang, X. C.; Liu, H. Z.; Hou, M. Q.; Sun, X. F.; Han, H. L.; Jiang, T.; Zhang, Z. F.; Han, B. X. Synthesis of supported ultrafine non-noble subnanometer-scale metal particles derived from metal-organic frameworks as highly efficient heterogeneous catalysts. Angew. Chem. 2016, 128, 1092–1096.
Matter, P. H.; Ozkan, U. S. Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal. Lett. 2006, 109, 115–123.
Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.
Zhang, J.; Li, J. J.; Wang, Z. L.; Wang, X. N.; Feng, W.; Zheng, W.; Cao, W. W.; Hu, P. A. Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 2014, 26, 2460–2466.
Wei, D. C.; Liu, Y. Q.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.
Li, N.; Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010, 48, 255–259.
Wang, F.; Song, S. Y.; Li, K.; Li, J. Q.; Pan, J.; Yao, S.; Ge, X.; Feng, J.; Wang, X.; Zhang, H. J. A "solid dual-ions- transformation" route to S, N co-doped carbon nanotubes as highly efficient "metal-free" catalysts for organic reactions. Adv. Mater. 2016, 28, 10679–10683.
Li, X.-H.; Li, H.-B.; Li, G.-D.; Chen, J.-S. General synthesis of uniform metal sulfide colloidal particles via autocatalytic surface growth: A self-correcting system. Inorg. Chem. 2009, 48, 3132–3138.
Nafiujjaman, M.; Nurunnabi, M.; Kang, S.-H.; Reeck, G. R.; Khan, H. A.; Lee, Y.-K. Ternary graphene quantum dot- polydopamine-Mn3O4 nanoparticles for optical imaging guided photodynamic therapy and T1-weighted magnetic resonance imaging. J. Mater. Chem. B 2015, 3, 5815–5823.
Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High- throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4, 25–29.
Qiang, W. B.; Li, W.; Li, X. Q.; Chen, X.; Xu, D. K. Bioinspired polydopamine nanospheres: A superquencher for fluorescence sensing of biomolecules. Chem. Sci. 2014, 5, 3018–3024.
Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011, 3, 3132–3137.
Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.
Cao, H. L.; Zhou, X. F.; Qin, Z. H.; Liu, Z. P. Low- temperature preparation of nitrogen-doped graphene for supercapacitors. Carbon 2013, 56, 218–223.
He, J. T.; Ji, W. J.; Yao, L.; Wang, Y. W.; Khezri, B.; Webster, R. D.; Chen, H. Y. Strategy for nano-catalysis in a fixed-bed system. Adv. Mater. 2014, 26, 4151–4155.
Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893.
Li, J.; Liu, C.-Y.; Liu, Y. Au/graphene hydrogel: Synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 2012, 22, 8426–8430.
Lu, X. M.; Sun, Y. T.; Chen, Z.; Gao, Y. F. A multi-functional textile that combines self-cleaning, water-proofing and VO2- based temperature-responsive thermoregulating. Sol. Energ. Mat. Sol. C. 2017, 159, 102–111.
Kong, X.-K.; Sun, Z.-Y.; Chen, M.; Chen, C. L.; Chen, Q.-W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by n-doped graphene. Energy Environ. Sci. 2013, 6, 3260–3266.
Hu, H. W.; Xin, J. H.; Hu, H.; Wang, X. W. Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Res. 2015, 8, 3992–4006.
Gao, L.; Li, R.; Sui, X. L.; Li, R.; Chen, C. L.; Chen, Q. W. Conversion of chicken feather waste to N-doped carbon nanotubes for the catalytic reduction of 4-nitrophenol. Environ. Sci. Technol. 2014, 48, 10191–10197.
Huang, G.; Yang, L.; Ma, X.; Jiang, J.; Yu, S. H.; Jiang, H. L. Metal–organic framework-templated porous carbon for highly efficient catalysis: The critical role of pyrrolic nitrogen species. Chem. —Eur. J. 2016, 22, 3470–3477.
Kong, X. K.; Chen, Q. W.; Lun, Z. Y. Probing the influence of different oxygenated groups on graphene oxide's catalytic performance. J. Mater. Chem. A 2014, 2, 610–613.
Gazi, S.; Ananthakrishnan, R. Metal-free-photocatalytic reduction of 4-nitrophenol by resin-supported dye under the visible irradiation. Appl. Catal. B 2011, 105, 317–325.