Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increase in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2 <100> Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta-MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.
Jiang, H.; Zhao, T.; Ma, J.; Yan, C. Y.; Li, C. Z. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem. Commun. 2011, 47, 1264–1266.
Huang, X. K.; Lv, D. P.; Zhang, Q. S.; Chang, H. T.; Gan, J. L.; Yang, Y. Highly crystalline macroporous β-MnO2: Hydrothermal synthesis and application in lithium battery. Electrochim. Acta 2010, 55, 4915–4920.
Chen, W. -M.; Qie, L.; Shao, Q. -G.; Yuan, L. -X.; Zhang, W. -X.; Huang, Y. -H. Controllable synthesis of hollow bipyramid β-MnO2 and its high electrochemical performance for lithium storage. ACS Appl. Mater. Interfaces 2012, 4, 3047–3053.
Thapa, A. K.; Hidaka, Y.; Hagiwara, H.; Ida, S.; Ishihara, T. Mesoporous β-MnO2 air electrode modified with Pd for rechargeability in lithium-air battery. J. Electrochem. Soc. 2011, 158, A1483–A1489.
Zhang, Y.; Chen, L. Y.; Zheng, Z.; Yang, F. L. A redox-hydrothermal route to β-MnO2 hollow octahedra. Solid State Sci. 2009, 11, 1265–1269.
Boppana, V. B. R.; Jiao, F. Nanostructured MnO2: An efficient and robust water oxidation catalyst. Chem. Commun. 2011, 47, 8973–8975.
Huang, Z.; Zhang, M.; Cheng, J. F.; Gong, Y. P.; Li, X.; Chi, B.; Pu, J.; Jian, L. Silver decorated beta-manganese oxide nanorods as an effective cathode electrocatalyst for rechargeable lithium–oxygen battery. J. Alloys Compd. 2015, 626, 173–179.
Dong, Y. M.; Yang, H. X.; He, K.; Song, S. Q.; Zhang, A. M. β-MnO2 nanowires: A novel ozonation catalyst for water treatment. Appl. Catal. B 2009, 85, 155–161.
Ghodbane, O.; Pascal, J. -L.; Favier, F. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl. Mater. Interfaces 2009, 1, 1130– 1139.
Zang, J. F.; Li, X. D. In situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors. J. Mater. Chem. 2011, 21, 10965–10969.
Cheng, F. Y.; Zhao, J. Z.; Song, W. E.; Li, C. S.; Ma, H.; Chen, J.; Shen, P. W. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 2006, 45, 2038–2044.
Luo, J. -Y.; Zhang, J. -J.; Xia, Y. -Y. Highly electrochemical reaction of lithium in the ordered mesoporosus β-MnO2. Chem. Mater. 2006, 18, 5618–5623.
Jiao, F.; Bruce, P. G. Mesoporous crystalline β-MnO2—A reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 2007, 19, 657–660.
Zheng, D. S.; Yin, Z. L.; Zhang, W. M.; Tan, X. J.; Sun, S. X. Novel branched γ-MnOOH and β-MnO2 multipod nanostructures. Cryst. Growth Des. 2006, 6, 1733–1735.
Zhou, J. L.; Yu, L.; Sun, M.; Lan, B.; Ye, F.; He, J.; Yu, Q. MnO2 nanosheet-assisted hydrothermal synthesis of β-MnO2 branchy structures. Mater. Lett. 2012, 79, 288–291.
Oxford, G. A. E.; Chaka, A. M. First-principles calculations of clean, oxidized, and reduced β-MnO2 surfaces. J. Phys. Chem. C 2011, 115, 16992–17008.
Tompsett, D. A.; Parker, S. C.; Bruce, P. G.; Islam, M. S. Nanostructuring of β-MnO2: The important role of surface to bulk ion migration. Chem. Mater. 2013, 25, 536–541.
Oxford, G. A. E.; Chaka, A. M. Structure and stability of hydrated β-MnO2 surfaces. J. Phys. Chem. C 2012, 116, 11589–11605.
Tompsett, D. A.; Parker, S. C.; Islam, M. S. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance. J. Am. Chem. Soc. 2014, 136, 1418–1426.
Tian, N.; Zhou, Z. -Y.; Sun, S. -G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.
Zhang, B.; Wang, D.; Hou, Y.; Yang, S.; Yang, X. H.; Zhong, J. H.; Liu, J.; Wang, H. F.; Hu, P.; Zhao, H. J. et al. Facet-dependent catalytic activity of platinum nanocrystals for triiodide reduction in dye-sensitized solar cells. Sci. Rep. 2013, 3, 1836.
Tian, N.; Zhou, Z. -Y.; Yu, N. -F.; Wang, L. -Y.; Sun, S. -G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581.
Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.
Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. J. Am. Chem. Soc. 2010, 132, 6124–6130.
Gao, R.; Zhu, J. Z.; Xiao, X. L.; Hu, Z. B.; Liu, J. J.; Liu, X. F. Facet-dependent electrocatalytic performance of Co3O4 for rechargeable Li–O2 battery. J. Phys. Chem. C 2015, 119, 4516–4523.
Huang, X. K.; Lv, D. P.; Yue, H. J.; Attia, A.; Yang, Y. Controllable synthesis of α- and β-MnO2: Cationic effect on hydrothermal crystallization. Nanotechnology 2008, 19, 225606.
Chen, N.; Wang, K.; Zhang, X.; Chang, X. P.; Kang, L. P.; Liu, Z. -H. Ionic liquid-assisted hydrothermal synthesis of β-MnO2 with hollow polyhedra morphology. Colloids Surf. A 2011, 387, 10–16.
Wang, X.; Li, Y. D. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124, 2880–2881.
Wang, G. L.; Tang, B.; Zhuo, L. H.; Ge, J. C.; Xue, M. Facile and selected-control synthesis of β-MnO2 nanorods and their magnetic properties. Eur. J. Inorg. Chem. 2006, 2006, 2313–2317.
Zheng, D. S.; Sun, S. X.; Fan, W. L.; Yu, H. Y.; Fan, C. H.; Cao, G. X.; Yin, Z. L.; Song, X. Y. One-step preparation of single-crystalline β-MnO2 nanotubes. J. Phys. Chem. B 2005, 109, 16439–16443.
Wang, X.; Li, Y. D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. —Eur. J. 2003, 9, 300–306.
Zhang, X.; Yang, W. S.; Yang, J. J.; Evans, D. G. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals. J. Cryst. Growth 2008, 310, 716–722.
Su, D. W.; Ahn, H. -J.; Wang, G. X. β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater. 2013, 5, e70.
Yuan, Y. F.; Wood, S. M.; He, K.; Yao, W. T.; Tompsett, D.; Lu, J.; Nie, A. M.; Islam, M. S.; Shahbazian-Yassar, R. Atomistic insights into the oriented attachment of tunnel-based oxide nanostructures. ACS Nano 2016, 10, 539–548.