Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of photocatalysts that can effectively harvest visible light is essential for advances in high-efficiency solar-driven hydrogen generation. Herein, we synthesized water soluble CuInS2 (CIS) and Cu-In-Zn-S (CIZS) quantum dots (QDs) by using one-pot aqueous method. The CIZS QDs are well passivated by glutathione ligands and are highly stable in aqueous conditions. We subsequently applied these QDs as a light harvesting material for photocatalytic hydrogen generation. Unlike most small band gap materials that show extremely low efficiency, these new QDs display remarkable energy conversion efficiency in the visible and near-infrared regions. The external quantum efficiency at 650 nm is ~1.5%, which, to the best of our knowledge, is the highest value achieved until now in the near-infrared region.
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao. S. S. Semiconductor-based photocatalytic hydrongen generation. Chem. Rev. 2010, 110, 6503–6570.
Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 2009, 42, 1966–1973.
Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177–2185.
Han, Z. J.; Eisenberg, R.; Fuel from water: The photochemical generation of hydrogen from water. Acc. Chem. Res. 2014, 47, 2537–2544.
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.
Zhuang, T. -T.; Liu, Y.; Sun, M.; Jiang, S. -L.; Zhang, M. -W.; Wang, X. -C.; Zhang, Q.; Jiang, J.; Yu, S. -H. A unique ternary semiconductor–(semiconductor/metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11495–11500.
Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian, H. N. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 12306–12310.
Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.
Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.
Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.
Brown, K. A.; Wilker, M. B.; Boehm, M.; Dukovic, G.; King, P. W. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes. J. Am. Chem. Soc. 2012, 134, 5627–5636.
Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović, A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach, A. L. et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018.
Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.
Brown, K. A.; Dayal, S.; Ai, X.; Rumbles, G.; King, P. W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 2010, 132, 9672–9680.
Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.
Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. -Z.; Tung, C. -H.; Zhang, T. R. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351.
Cao, Y. T.; Geng, W.; Shi, R.; Shang, L.; Waterhouse, G. I. N.; Liu, L. M.; Wu, L. -Z.; Tung, C. -H.; Yin, Y. D.; Zhang, T. R. Thiolate-mediated photoinduced synthesis of ultrafine Ag2S quantum dots from silver nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 14952–14957.
Han, K.; Wang, M.; Zhang, S.; Wu, S.; Yang, Y.; Sun, L. C. Photochemical hydrogen production from water catalyzed by CdTe quantum dots/molecular cobalt catalyst hybrid systems. Chem. Commun. 2015, 51, 7008–7011.
Das, A.; Han, Z. J.; Haghighi, M. G.; Eisenberg. R. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 16716–16723.
Wang, P.; Zhang, J.; He, H. L.; Xu, X. L.; Jin, Y. D. The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H2 photogeneration from water. Nanoscale 2015, 7, 5767–5775.
Wang, P.; Zhang, J.; He, H. L.; Xu. X. L.; Jin, Y. D. Efficient visible light-driven H2 production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale 2014, 6, 13470–13475.
Li, C. -B.; Li, Z. -J.; Yu, S.; Wang, G. -X.; Wang, F.; Meng, Q. -Y.; Chen, B.; Feng, K.; Tung, C. -H.; Wu, L. -Z. Interface-directed assembly of a simple precursor of [FeFe]–H2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. Energy Environ. Sci. 2013, 6, 2597–2602.
Wang, F.; Liang, W. J.; Jian, J. X.; Li, C. B.; Chen, B.; Tung, C. H.; Wu, L. Z. Exceptional poly(acrylic acid)-based artificial[FeFe]-hydrogenases for photocatalytic H2 production in water. Angew. Chem., Int. Ed. 2013, 52, 8134–8138.
Jian, J. X.; Liu, Q.; Li, Z. J.; Wang, F.; Li, X. B.; Li, C. B.; Liu, B.; Meng, Q. Y.; Chen, B.; Feng, K. et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nat. Commun. 2013, 4, 2695.
Huang, J. E.; Mulfort, K. L.; Du, P. W.; Chen, L. X. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production. J. Am. Chem. Soc 2012, 134, 16472–16475.
Liu, X. Y.; Chen, H.; Wang, R. L.; Shang, Y. Q.; Zhang, Q.; Li, W.; Zhang, G. Z.; Su, J.; Dinh, C. T.; de Arquer, F. P. G. et al. 0D-2D quantum dot: Metal dichalcogenide nanocomposite photocatalyst achieves efficient hydrogen generation. Adv. Mater. 2017, 29, 1605646.
Li, L.; Daou, T. J.; Texier, I.; Chi, T. T. K.; Liem, N. Q.; Reiss, P. Highly luminescent CuInS2/ZnS core/shell nanocrystals: Cadmium-free quantum dots for in vivo imaging. Chem. Mater. 2009, 21, 2422–2429.
Speranskaya, E. S.; Beloglazova, N. V.; Abé, S.; Aubert, T.; Smet, P. F.; Poelman, D.; Goryacheva, I. Y.; De Saeger, S.; Hens, Z. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 2014, 30, 7567–7575.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223–16233.
Kolny-Olesiak, J.; Weller, H. Synthesis and application of colloidal CuInS2 semiconductor nanocrystals. ACS Appl. Mater. Interfaces 2013, 5, 12221–12237.
Torimoto, T.; Kameyama, T.; Kuwabata, S. Photofunctional materials fabricated with chalcopyrite-type semiconductor nanoparticles composed of AgInS2 and its solid solutions. J. Phys. Chem. Lett. 2014, 5, 336–347.
Park, J.; Kim, S. -W. CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 2011, 21, 3745–3750.
Zhang, A. D.; Dong, C. Q.; Li, L.; Yin, J. J.; Liu, H.; Huang, X. Y.; Ren, J. C. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach. Sci. Rep. 2015, 5, 15227.
Zhong, H. Z.; Lo, S. S.; Mirkovic, T.; Li, Y. C.; Ding, Y. Q.; Li, Y. F.; Scholes, G. D. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano 2010, 4, 5253–5262.
De Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D'Andrea, C.; T assone, F.; Manna, L. Strongly fluorescent quaternary Cu–In–Zn–S nanocrystals prepared from Cu1–xInS2 nanocrystals by partial cation exchange. Chem. Mater. 2012, 24, 2400–2406.
Zhang, Y. H.; Zhang, N.; Tang, Z. -R.; Xu, Y. -J. Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer. ACS Nano 2012, 6, 9777–9789.
Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.
Liu, X.; Zheng, H. F.; Sun, Z. J.; Han, A.; Du, P. W. Earth-abundant copper-based bifunctional electrocatalyst for both catalytic hydrogen production and water oxidation. ACS Catal. 2015, 5, 1530–1538.
Hu, Y.; Gao, X. H.; Yu, L.; Wang, Y. R.; Ning, J. Q.; Xu, S. J.; Lou, X. W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639.
Susumu, K.; Oh, E.; Delehanty, J. B.; Blanco-Canosa, J. B.; Johnson, B. J.; Jain, V.; Hervey, W. J.; Algar, W. R.; Boeneman, K.; Dawson, P. E. et al. Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J. Am. Chem. Soc. 2011, 133, 9480–9496.
Wang, W. T.; Ji, X.; Kapur, A.; Zhang, C. Q.; Mattoussi, H. A multifunctional polymer combining the imidazole and zwitterion motifs as a biocompatible compact coating for quantum dots. J. Am. Chem. Soc. 2015, 137, 14158–14172.
Rao, P. H.; Yao, W.; Li, Z. C.; Kong, L.; Zhang, W. Q.; Li, L. Highly stable CuInS2@ZnS: Al core@shell quantum dots: The role of aluminium self-passivation. Chem. Commun. 2015, 51, 8757–8760.
Xu, M.; Zai, J. T.; Yuan, Y. P.; Qian, X. F. Band gap-tunable (CuIn)xZn2(1−x)S2 solid solutions: Preparation and efficient photocatalytic hydrogen production from water under visible light without noble metals. J. Mater. Chem. 2012, 22, 23929–23934.