AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material

Mingtao QiaoXingfeng LeiYong MaLidong TianXiaowei HeKehe SuQiuyu Zhang( )
Department of Applied ChemistryKey Laboratory of Space Applied Physics and Chemistry of Ministry of EducationSchool of ScienceNorthwestern Polytechnical UniversityYouyi Road 127#Xi'an710072China
Show Author Information

Graphical Abstract

Abstract

Yolk–shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption–desorption isotherms indicate a Brunauer–Emmett–Teller (BET) specific surface area of 74 m2/g and a pore width of 5–30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20 wt.% yolk–shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of -63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk–shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.

Electronic Supplementary Material

Download File(s)
12274_2017_1767_MOESM1_ESM.pdf (1.5 MB)

References

1

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

2

Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566.

3

Okoniewski, M.; Stuchly, M. A. A study of the handset antenna and human body interaction. IEEE Trans. Microw. Theory Tech. 1996, 44, 1855–1864.

4

Frey, A. H. Headaches from cellular telephones: Are they real and what are the implications? Environ. Health Perspect. 1998, 106, 101–103.

5

Du, Y. C.; Liu, W. W.; Qiang, R.; Wang, Y.; Han, X. J.; Ma, J.; Xu, P. Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites. ACS Appl. Mater. Interfaces 2014, 6, 12997–13006.

6

Zhang, B.; Du, Y. C.; Zhang, P.; Zhao, H. T.; Kang, L. L.; Han, X. J.; Xu, P. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 2013, 130, 1909–1916.

7

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

8

Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, S. Y.; Sun, C. H.; Yan, J.; Chen, P. Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly (3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845.

9

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

10

Chen, C.; Liu, Q. H.; Bi, H.; You, W. B.; She, W.; Che, R. C. Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers. Phys. Chem. Chem. Phys. 2016, 18, 26712–26718.

11

Ding, D.; Wang, Y.; Li, X. D.; Qiang, R.; Xu, P.; Chu, W. L.; Han, X. J.; Du, Y. C. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon 2017, 111, 722–732.

12

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Dependency of tunable microwave absorption performance on morphology-controlled hierarchical shells for core-shell Fe3O4@MnO2 composite microspheres. Chem. Eng. J. 2016, 304, 552–562.

13

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Well-defined core-shell Fe3O4@polypyrrole composite microspheres with tunable shell thickness: Synthesis and their superior microwave absorption performance in the Ku band. Ind. Eng. Chem. Res. 2016, 55, 6263–6275.

14

Liu, J. W.; Cheng, J.; Chen, R. C.; Xu, J. J.; Liu, M. M.; Liu, Z. W. Double-shelled yolk-shell microspheres with Fe3O4 cores and SnO2 double shells as high-performance microwave absorbers. J. Phys. Chem. C 2013, 117, 489–495.

15

Liu, J. W.; Xu, J. J.; Chen, R. C.; Chen, H. J.; Liu, M. M.; Liu, Z. W. Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. Eur. J. 2013, 21, 6746–6752.

16

Liu, J. W.; Xu, J. J.; Chen, R. C.; Chen, H. J.; Liu, Z. W.; Xia, F. Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement. J. Mater. Chem. 2012, 22, 9277–9284.

17

Xu, J. J.; Liu, J. W.; Chen, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

18

Tian, C. H.; Du, Y. C.; Cui, C. S.; Deng, Z. L.; Xue, J. L.; Xu, P.; Qiang, R.; Wang, Y.; Han, X. J. Synthesis and microwave absorption enhancement of yolk–shell Fe3O4@C microspheres. J. Mater. Sci. 2017, 52, 6349–6361.

19

Zhao, B.; Guo, X. Q.; Zhao, W. Y.; Deng, J. S.; Shao, G.; Fan, B. B.; Bai, Z. Y.; Zhang, R. Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 2016, 8, 28917–28925.

20

Liu, Q. H.; Cao, Q.; Zhao, X. B.; Bi, H.; Wang, C.; Wu, D. S.; Che, R. C. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 2015, 7, 4233–4240.

21

Wu, R. B.; Zhou, K.; Yang, Z. H.; Qian, X. K.; Wei, J.; Liu, L.; Huang, Y. Z.; Kong, L. B.; Wang, L. Y. Moltensalt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 2013, 15, 570–576.

22

Liu, J.; Cao, M. -S.; Luo, Q.; Shi, H. -L.; Wang, W. -Z.; Yuan, J. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature. ACS Appl. Mater. Interfaces 2016, 8, 22615–22622.

23

Han, R.; Li, W.; Pan, W. W.; Zhu, M. G.; Zhou, D.; Li, F. -S. 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method. Sci. Rep. 2014, 4, 7493.

24

Shen, J. Y.; Yao, Y. T.; Liu, Y. J.; Leng, J. S. Tunable hierarchical Fe nanowires with a facile template-free approach for enhanced microwave absorption performance. J. Mater. Chem. C 2016, 4, 7614–7621.

25

Zhang, X. F.; Li, Y. X.; Liu, R. G.; Rao, Y.; Rong, H. W.; Qin, G. W. High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 2016, 8, 3494–3498.

26

Ma, M. L.; Zhang, Q. Y.; Zhang, H. P.; Geng, W. C.; Zhang, B. L.; Dou, J. B. Preparation of one-dimensional Fe3O4/ P(MAA-DVB) nanochains by magnetic-field-induced precipitation polymerization. Sci. Sin. Chim. 2012, 42, 1007–1013.

27

Ma, M. L.; Zhang, Q. Y.; Xin, T. J.; Zhang, H. P.; Geng, W. C.; Jian, Z. Preparation and characterization of structure-tailored magnetic fluorescent Fe3O4/P(GMA–EGDMA–NVCz) core–shell microspheres. J. Mater. Sci. 2013, 48, 5302–5308.

28

Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Wang, W. B.; Su, K. H.; Zhang, Q. Y. Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core-shell Fe3O4@MnO2 composite microspheres with lightweight feature. J. Alloy. Compd. 2016, 693, 432–439.

29

Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S. G.; Qi, X. Q.; Wei, Z. D. Shape fixing via salt recrystallization: A morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5414–5420.

30

Zhang, B. L.; Li, P. T.; Zhang, H. P.; Li, X. J.; Tian, L.; Wang, H.; Chen, X.; Ali, N.; Ali, Z.; Zhang, Q. Y. Redblood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 2016, 366, 328–338.

31

Zhang, B. L.; Li, P. T.; Zhang, H. P.; Wang, H.; Li, X. J.; Tian, L.; Ali, N.; Ali, Z.; Zhang, Q. Y. Preparation of lipase/Zn3(PO4)2 hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 2016, 291, 287–297.

32

Lei, X. F.; Chen, Y.; Zhang, H. P.; Li, X. J.; Yao, P.; Zhang, Q. Y. Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl. Mater. Interfaces 2013, 5, 10207–10220.

33

Gu, J. W.; Liang, C. B.; Zhao, X. M.; Gan, B.; Qiu, H.; Guo, Y.; Yang, X. Q.; Zhang, Q.; Wang, D. -Y. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos. Sci. Technol. 2017, 139, 83–89.

34

Reddy, G. K.; Boolchand, P.; Smirniotis, P. G. Unexpected behavior of copper in modified ferrites during high temperature WGS Reaction Aspects of Fe3+↔Fe2+ redox chemistry from Mössbauer and XPS studies. J. Phys. Chem. C 2012, 116, 11019–11031.

35

Lei, X. F.; Chen, Y. H.; Qiao, M. T.; Tian, L. D.; Zhang, Q. Y. Hyperbranched polysiloxane (HBPSi)-based polyimide films with ultralow dielectric permittivity, desirable mechanical and thermal properties. J. Mater. Chem. C 2016, 4, 2134–2146.

36

Gu, J. W.; Meng, X. D.; Tang, Y. S.; Li, Y.; Zhuang, Q.; Kong, J. Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities. Compos. A: Appl. Sci. Manufact. 2017, 92, 27–32.

37

Zhang, X. H.; Jin, B.; Li, L. L.; Cheng, T.; Wang, H. H.; Xin, P. M.; Lang, X. Y.; Yang, C. C.; Gao, W.; Zhu, Y. F. et al. (De)Lithiation of tubular polypyrrole-derived carbon/ sulfur composite in lithium-sulfur batteries. J. Electroanal. Chem. 2016, 780, 26–31.

38

Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

39

To, J. W.; He, J. J.; Mei, J. G.; Haghpanah, R.; Chen, Z.; Kurosawa, T.; Chen, S. C.; Bae, W. -G.; Pan, L. J.; Tok, J. B. -H. et al. Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 2016, 138, 1001–1009.

40

Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ. Environ. Sci. 2011, 4, 717–724.

41

Kwon, T.; Nishihara, H.; Itoi, H.; Yang, Q. -H.; Kyotani, T. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Langmuir 2009, 25, 11961–11968.

42

Chen, L. -F.; Zhang, X. -D.; Liang, H. -W.; Kong, M. G.; Guan, Q. -F.; Chen, P.; Wu, Z. -Y.; Yu, S. -H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

43

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

44

Li, W. R.; Chen, D. H.; Li, Z.; Shi, Y. F.; Wan, Y.; Huang, J. J.; Yang, J. J.; Zhao, D. Y.; Jiang, Z. Y. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochem. Commun. 2007, 9, 569–573.

45

Herzer, G. Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 1992, 112, 258–262.

46

Livingston, J. D. A review of coercivity mechanisms (invited). J. Appl. Phys. 1981, 52, 2544–2548.

47

Li, N.; Huang, G. -W.; Li, Y.; Xiao, H. -M.; Feng, Q. -P.; Hu, N.; Fu, S. -Y. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl. Mater. Interfaces 2017, 9, 2973–2983.

48

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593.

49

Huang, X. G.; Zhang, J.; Lai, M.; Sang, T. Y. Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers. J. Alloy. Compd. 2015, 627, 367–373.

50

Wu, T.; Liu, Y.; Zeng, X.; Cui, T. T.; Zhao, Y. T.; Li, Y. N.; Tong, G. X. Facile hydrothermal synthesis of Fe3O4/C core–shell nanorings for efficient low-frequency microwave absorption. ACS Appl. Mater. Interfaces 2016, 8, 7370–7380.

51

Zhang, T.; Huang, D. Q.; Yang, Y.; Kang, F. Y.; Gu, J. L. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater. Sci. Eng. : B 2013, 178, 1–9.

52

Liu, X.; Guo, H. Z.; Xie, Q. S.; Luo, Q.; Wang, L. -S.; Peng, D. -L. Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. J. Alloy. Compd. 2015, 649, 537–543.

53

Li, W. X.; Lv, B. L.; Wang, L. C.; Li, G. M.; Xu, Y. Fabrication of Fe3O4@C core–shell nanotubes and their application as a lightweight microwave absorbent. RSC Adv. 2014, 4, 55738–55744.

54

Meng, F. B.; Wei, W.; Chen, X. N.; Xu, X. L.; Jiang, M.; Jun, L.; Wang, Y.; Zhou, Z. W. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption. Phys. Chem. Chem. Phys. 2016, 18, 2510–2516.

55

Chen, Y. -J.; Xiao, G.; Wang, T. -S.; Ouyang, Q. -Y.; Qi, L. -H.; Ma, Y.; Gao, P.; Zhu, C. -L.; Cao, M. -S.; Jin, H. -B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.

56

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core–sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034–2045.

57

Fleming, J. Web Navigation: Designing the User Experience; O'Reilly Media: Sebastopol, CA, 1998.

58

Sun, Y.; Xu, J. L.; Qiao, W.; Xu, X. B.; Zhang, W. L.; Zhang, K. Y.; Zhang, X.; Chen, X.; Zhong, W.; Du, Y. W. Constructing two-, zero-, and one-dimensional integrated nanostructures: an effective strategy for high microwave absorption performance. ACS Appl. Mater. Interfaces 2016, 8, 31878–31886.

59

Fang, P. H. Cole–Cole diagram and the distribution of relaxation times. J. Chem. Phys. 1965, 42, 3411–3413.

60

Shi, X. -L.; Cao, M. -S.; Yuan, J.; Fang, X. -Y. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009, 95, 163108.

61

Zhao, B.; Zhao, W. Y.; Shao, G.; Fan, B. B.; Zhang, R. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. Dalton T. 2015, 44, 15984–15993.

62

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core–shell structure. Phys. Chem. Chem. Phys. 2015, 17, 2531–2539.

63

Lv, H. L.; Zhang, H. Q.; Zhao, J.; Ji, G. B.; Du, Y. W. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 2016, 9, 1813–1822.

64

Zhao, B.; Shao, G.; Fan, B. B.; Zhao, W. Y.; Zhang, R. Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres. RSC Adv. 2014, 4, 57424–57429.

65

Liu, Y.; Cui, T. T.; Wu, T.; Li, Y. N.; Tong, G. X. Excellent microwave-absorbing properties of elliptical Fe3O4 nanorings made by a rapid microwave-assisted hydrothermal approach. Nanotechnology 2016, 27, 165707.

66

Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776–9783.

67

Lv, H. L.; Liang, X. H.; Cheng, Y.; Zhang, H. Q.; Tang, D. M.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Coin-like α-Fe2O3@ CoFe2O4 core–shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 2015, 7, 4744–4750.

68

Chen, Y. -J.; Gao, P.; Wang, R. -X.; Zhu, C. -L.; Wang, L. -J.; Cao, M. -S.; Jin, H. -B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061–10064.

69

Ohkoshi, S. I.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew. Chem., Int. Ed. 2007, 46, 8392–8395.

70

Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. Constructing uniform core–shell PPy@ PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099.

71

Menéndez, J. A.; Juárez-Pérez, E. J.; Ruisánchez, E.; Bermúdez, J. M.; Arenillas, A. Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon 2011, 49, 346–349.

Nano Research
Pages 1500-1519
Cite this article:
Qiao M, Lei X, Ma Y, et al. Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Research, 2018, 11(3): 1500-1519. https://doi.org/10.1007/s12274-017-1767-0
Part of a topical collection:

1188

Views

352

Crossref

N/A

Web of Science

338

Scopus

22

CSCD

Altmetrics

Received: 07 April 2017
Revised: 12 July 2017
Accepted: 13 July 2017
Published: 02 February 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return