Sort:
Research Article Issue
Recycling the spent electronic materials to construct a high-performance Cu1.94S/ZnS heterostructure anode of sodium-ion batteries
Nano Research 2024, 17(5): 4006-4015
Published: 25 November 2023
Abstract PDF (11 MB) Collect
Downloads:66

Heterostructure engineering by coupling different nanocrystals has received extensive attention because it can enhance the reaction kinetics of the anode of sodium-ion batteries (SIBs). However, constructing high-quality heterostructure anode materials through green and environmentally friendly methods remains a challenge. Herein, we have proposed a simple one-step method by recycling the electronic waste metal materials to synthesize the Cu1.94S/ZnS heterostructure materials. Combined with the experimental analysis and first principle calculations, we find that the synergistic effect of different components in heterostructure structures can significantly enhance the reversible capacity and rate performance of anode materials. Based on the constructed Cu1.94S/ZnS anode, we obtain a superior reversible capacity of 440 mAh·g−1 at 100 mA·g−1 and 335 mAh·g−1 after 3000 cycles at 2000 mA·g−1. Our work sheds new light on designing high-rate and capacity anodes for SIBs through the greenness synthesis method.

Research Article Issue
A healable, mechanically robust and ultrastretchable ionic conductive elastomer for durably wearable sensor
Nano Research 2024, 17(4): 3369-3378
Published: 08 November 2023
Abstract PDF (4.8 MB) Collect
Downloads:52

The ionic conductive elastomers show great promise in multifunctional wearable electronics, but they currently suffer from liquid leakage/evaporation or mechanical compliance. Developing ionic conductive elastomers integrating non-volatility, mechanical robustness, superior ionic conductivity, and ultra-stretchability remains urgent and challenging. Here, we developed a healable, robust, and conductive elastomer via impregnating free ionic liquids (ILs) into the ILs-multigrafted poly(urethane-urea) (PUU) elastomer networks. A crucial strategy in the molecular design is that imidazolium cations are largely introduced by double-modification of PUU and centipede-like structures are obtained, which can lock the impregnated ILs through strong ionic interactions. In this system, the PUU matrix contributes outstanding mechanical properties, while the hydrogen bonds and ionic interactions endow the elastomer with self-healing ability, conductivity, as well as non-volatility and transparency. The fabricated ionic conductive elastomers show good conductivity (3.8 × 10−6 S·cm−1), high mechanical properties, including tensile stress (4.64 MPa), elongation (1470%), and excellent healing ability (repairing efficiency of 90% after healing at room temperature for 12 h). Significantly, the conductive elastomers have excellent antifatigue properties, and demonstrate a highly reproducible response after 1000 uninterrupted extension-release cycles. This work provides a promising strategy to prepare ionic conductive elastomers with excellent mechanical properties and stable sensing capacity, and further promote the development of mechanically adaptable intelligent sensors.

Research Article Issue
Tailoring of a robust asymmetric aramid nanofibers/MXene aerogel film for enhanced infrared thermal camouflage and Joule heating performances
Nano Research 2024, 17(3): 1990-1998
Published: 26 June 2023
Abstract PDF (21.5 MB) Collect
Downloads:62

The development of infrared (IR) surveillance technology has led to a growing interest in thermal camouflage. However, the trade-off relationship between low IR-emissivity and thermal insulation hinders the advance of thermal camouflage materials. Herein, guided by multi-physics simulation, we show a design of asymmetric aramid nanofibers/MXene (ANF/MXene) aerogel film that realizes high-efficient thermal camouflage applications. The rationale is that the asymmetric structure contains a thermal-insulation three-dimensional (3D) network part to prevent effective heat transfer and a low IR-emissivity (~ 0.3) dense surface layer to suppress radiative heat emission. It is remarkable that the synergy mechanism in the topology structure contributes to over 40% reduction of target radiation temperature. Impressively, the tailored asymmetric ANF/MXene aerogel film also enables sound mechanical properties such as a Young’s modulus of 44.4 MPa and a tensile strength of 1.3 MPa, superior to most aerogel materials. It also exhibits great Joule heating performances including low driving voltage (4 V), fast thermal response (< 10 s), and long-term stability, further enabling its versatile thermal camouflage applications. This work offers an innovative design concept to configure multifunctional structures for next-generation thermal management applications.

Research Article Issue
Identifying the roles of Ce3+–OH and Ce–H in the reverse water–gas shift reaction over highly active Ni-doped CeO2 catalyst
Nano Research 2022, 15(7): 5831-5841
Published: 18 April 2022
Abstract PDF (9.1 MB) Collect
Downloads:70

Nickel-CeO2-based materials are commonly used for the thermal catalytic hydrogenation of CO2. However, high Ni loadings and low CO selectivity restrict their use in the reverse water–gas shift (RWGS) reaction. Herein, we demonstrate a highly active, robust, and low-Ni-doped (1.1 wt.%) CeO2 catalyst (1.0-Ni-CeO2). The Ni-based-mass-specific CO formation rate reaches up to 1,542 mmol·gNi−1·h−1 with 100% CO selectivity at 300 °C for 100 h, among the best values reported in the literature. Density functional theory (DFT) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results reveal that the enhanced catalytic activity is attributed to the abundant Ce–H species, while the high selectivity results from low CO affinity. More importantly, a new reaction mechanism is proposed, which involves the reduction of bicarbonate to generate formate intermediate and CO by the H released from Ce–H species. The new findings in this work will benefit the design of economic, efficient, and robust catalysts for low-temperature RWGS reactions.

Research Article Issue
Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material
Nano Research 2018, 11(3): 1500-1519
Published: 02 February 2018
Abstract PDF (3.3 MB) Collect
Downloads:35

Yolk–shell Fe3O4@N-doped carbon nanochains, intended for application as a novel microwave-absorption material, have been constructed by a three-step method. Magnetic-field-induced distillation-precipitation polymerization was used to synthesize nanochains with a one-dimensional (1D) structure. Then, a polypyrrole shell was uniformly applied to the surface of the nanochains through oxidant-directed vapor-phase polymerization, and finally the pyrolysis process was completed. The obtained products were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and thermogravimetric analyses (TGA) to confirm the compositions. The morphology and microstructure were observed using an optical microscope, scanning electron microscope (SEM), and transmission electron microscope (TEM). The N2 absorption–desorption isotherms indicate a Brunauer–Emmett–Teller (BET) specific surface area of 74 m2/g and a pore width of 5–30 nm. Investigations of the microwave absorption performance indicate that paraffin-based composites loaded with 20 wt.% yolk–shell Fe3O4@N-doped carbon nanochains possess a minimum reflection loss of -63.09 dB (11.91 GHz) and an effective absorption bandwidth of 5.34 GHz at a matching layer thickness of 3.1 mm. In addition, by tailoring the layer thicknesses, the effective absorption frequency bands can be made to cover most of the C, X, and Ku bands. By offering the advantages of stronger absorption, broad absorption bandwidth, low loading, thin layers, and intrinsic light weight, yolk–shell Fe3O4@N-doped carbon nanochains will be excellent candidates for practical application to microwave absorption. An analysis of the microwave absorption mechanism reveals that the excellent microwave absorption performance can be explained by the quarter-wavelength cancellation theory, good impedance matching, intense conductive loss, multiple reflections and scatterings, dielectric loss, magnetic loss, and microwave plasma loss.

Research Article Issue
A series of nanoparticles with phase-separated structures by 1, 1-diphenylethene controlled one-step soap-free emulsion copolymerization and their application in drug release
Nano Research 2017, 10(9): 2905-2922
Published: 01 June 2017
Abstract PDF (1.7 MB) Collect
Downloads:15

A facile one-step approach to synthesize various phase-separated porous, raspberry-like, flower-like, core–shell and anomalous nanoparticles and nanocapsules via 1, 1-diphenylethene (DPE) controlled soap-free emulsion copolymerization of styrene (S) with glycidyl methacrylate (GMA), or acrylic acid (AA) is reported. By regulating the mass ratio of S/GMA, transparent polymer solution, porous and anomalous P(S-GMA) particles could be produced. The P(S-GMA) particles turn from flower-like to raspberry-like and then to anomalous structures with smooth surface as the increase of divinylbenzene (DVB) crosslinker. Transparent polymer solution, nanocapsules and core–shell P(S-AA) particles could be obtained by altering the mole ratio of S/AA; anomalous and raspberry-like P(S-AA) particles are produced by adding DVB. The unpolymerized S resulted from the low monomer conversion in the presence of DPE aggregates to form nano-sized droplets, and migrates towards the external surfaces of the GMA-enriched P(S-GMA) particles and the internal bulk of the AA-enriched P(S-AA) particles. The nano-sized droplets function as in situ porogen, porous P(S-GMA) particles and P(S-AA) nanocapsules are produced when the porogen is removed. This novel, facile, one-step method with excellent controllability and reproducibility will inspire new strategies for creating hierarchical phase-separated polymeric particles with various structures by simply altering the species and ratio of comonomers. The drug loading and release experiments on the porous particles and nanocapsules demonstrate that the release of doxorubicin hydrochloride is very slow in weakly basic environment and quick in weakly acidic environment, which enables the porous particles and nanocapsules with promising potential in drug delivery applications.

Total 6