AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Real-time decay of fluorinated fullerene molecules on Cu(001) surface controlled by initial coverage

Andrey I. Oreshkin1,§( )Dmitry A. Muzychenko1,§( )Sergey I. Oreshkin2Vladimir A. Yakovlev3Palanichamy Murugan4S. Selva Chandrasekaran4Vijay Kumar5,6Rauf Z. Bakhtizin7
Department of Physics Lomonosov Moscow State University119991Moscow, Russia
Sternberg Astronomical Institute Lomonosov Moscow State University119234Moscow, Russia
Institute of Petrochemical Synthesis Russian Academy of Sciences119991Moscow, Russia
CSIR Central Electrochemical Research InstituteKaraikudi630003Tamil Nadu, India
Dr. Vijay Kumar Foundation, 1969 Sector 4Gurgaon122001Haryana, India
Center for Informatics School of Natural Sciences Shiv Nadar University, NH91, Tehsil Dadari Gautam Budh Nagar 201 314 Uttar Pradesh, India
Department of Physical Electronics Bashkir State University450074Ufa, Russia

§Andrey I. Oreshkin and Dmitry A. Muzychenko contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

In this study, the evolution of C60F18 molecules on a Cu(001) surface was studied by means of scanning tunneling microscopy and density functional theory calculations. The results showed that fluorinated fullerenes (tortoise-shaped polar C60F18) decay on Cu(001) surfaces by a step-by-step detachment of F atoms from the C60 cage. The most favorable adsorption configuration was realized when the F atoms of C60F18 pointed towards the Cu surface and six F atoms were detached from it. The results also showed that a further decay of C60F12 molecules strongly depended on the initial C60F18 coverage. The detached F atoms initially formed a two-dimensional (2D) gas phase which then slowly transformed into F-induced surface structures. The degree of contact between the C60F12 molecules and the Cu(001) surface depended on the density of the 2D gas phase. Hence, the life-time of fluorinated fullerenes was determined by the density of the 2D gas phase, which was affected by the formation of new F-induced structures and the decay of C60F12 molecules.

Electronic Supplementary Material

Download File(s)
12274_2017_1823_MOESM1_ESM.pdf (4.2 MB)

References

1

Ratner, M. A brief history of molecular electronics. Nat. Nanotechnol. 2013, 8, 378-381.

2

Loertscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 2013, 8, 381-384.

3

Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230-234.

4

Liljeroth, P.; Repp, J.; Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 2007, 317, 1203-1206.

5

Yee, S. K.; Sun, J. B.; Darancet, P.; Tilley, T. D.; Majumdar, A.; Neaton, J. B.; Segalman, R. A. Inverse rectification in donor-acceptor molecular heterojunctions. ACS Nano 2011, 5, 9256-9263.

6

Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.; Hebard, A. F.; Fleming, R. M. C60 thin film transistors. Appl. Phys. Lett. 1995, 67, 121-123.

7

Kobozono, Y.; Nagano, T.; Haruyama, Y.; Kuwahara, E.; Takayanagi, T.; Ochi, K.; Fujiwara, A. Fabrication of C60 field-effect transistors with polyimide and Ba0.4Sr0.6Ti0.96O3 gate insulators. Appl. Phys. Lett. 2005, 87, 143506.

8

Pahner, P.; Kleemann, H.; Burtone, L.; Tietze, M. L.; Fischer, J.; Leo, K.; Lüssem, B. Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response. Phys. Rev. B 2013, 88, 195205.

9

Günther, A. A.; Sawatzki, M.; Formánek, P.; Kasemann, D.; Leo, K. Contact doping for vertical organic field-effect transistors. Adv. Funct. Mater. 2016, 26, 768-775.

10

Tang, M. L.; Bao, Z. A. Halogenated materials as organic semiconductors. Chem. Mater. 2011, 23, 446-455.

11

Taylor, R. Fluorinated fullerenes. Chem. -Eur. J. 2001, 7, 4074-4083.

12

Selig, H.; Lifshitz, C.; Peres, T.; Fischer, J. E.; McGhie, A. R.; Romanow, W. J.; McCauley Jr, J. P.; Smith Ⅲ, A. B. Fluorinated fullerenes. J. Am. Chem. Soc. 1991, 113, 5475-5476.

13

Tuinman, A. A.; Mukherjee, P.; Adcock, J. L.; Hettich, R. L.; Compton, R. N. Characterization and stability of highly fluorinated fullerenes. J. Phys. Chem. 1992, 96, 7584-7589.

14

Boltalina, O. V.; Abdul-Sada, A. K.; Taylor, R. Hyperfluorination of[60] fullerene by krypton difluoride. J. Chem. Soc., Perkin Trans. 2 1995, 981-985.

15

Boltalina, O. V.; Markov, V. Y.; Taylor, R.; Waugh, M. P. Preparation and characterisation of C60F18. Chem. Commun. 1996, 2549-2550.

16

Neretin, I. S.; Lyssenko, K. A.; Antipin, M. Y.; Slovokhotov, Y. L.; Boltalina, O. V.; Troshin, P. A.; Lukonin, A. Y.; Sidorov, L. N.; Taylor, R. C60F18, a flattened fullerene: Alias a hexa-substituted benzene. Angew. Chem., Int. Ed. 2000, 39, 3273-3276.

17

Tuinman, A. A.; Gakh, A. A.; Adcock, J. L.; Compton, R. N. Hyperfluorination of buckminsterfullerene: Cracking the sphere. J. Amer. Chem. Soc. 1993, 115, 5885-5886.

18

Boltalina, O. V.; Lukonin, A. Y.; Pavlovich, V. K.; Sidorov, L. N.; Taylor, R.; Abdul-Sada, A. K. Reaction of [60]fullerene with terbium(IV) fluoride. Fuller. Sci. Technol. 1998, 6, 469-479.

19

Edmonds, M. T.; Wanke, M.; Tadich, A.; Vulling, H. M.; Rietwyk, K. J.; Sharp, P. L.; Stark, C. B.; Smets, Y.; Schenk, A.; Wu, Q. -H. et al. Surface transfer doping of hydrogen-terminated diamond by C60F48: Energy level scheme and doping efficiency. J. Chem. Phys. 2012, 136, 124701.

20

Sque, S. J.; Jones, R.; Goss, J. P.; Briddon, P. R.; Oberg, S. First-principles study of C60 and C60F36 as transfer dopants for p-type diamond. J. Phys. : Condens. Matter 2005, 17, L21-L26.

21

Ouyang, T.; Loh, K. P.; Qi, D. C.; Wee, A. T. S.; Nesladek, M. Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond. Chem. Phys. Chem. 2008, 9, 1286-1293.

22

Tadich, A.; Edmonds, M. T.; Ley, L.; Fromm, F.; Smets, Y.; Mazej, Z.; Riley, J.; Pakes, C. I.; Seyller, T.; Wanke, M. Tuning the charge carriers in epitaxial graphene on SiC(0001) from electron to hole via molecular doping with C60F48. Appl. Phys. Lett. 2013, 102, 241601.

23

Tada, T.; Uchida, N.; Kanayama, T.; Hiura, H.; Kimoto, K. Charge-transfer doping by fullerenes on oxidized Si surfaces. J. App. Phys. 2007, 102, 074504.

24

Oreshkin, A. I.; Bakhtizin, R. Z.; Murugan, P.; Kumar, V.; Fukui, N.; Hashizume, T.; Sakurai, T. Initial stage of the adsorption of fluorofullerene molecules on Si surface. JETP Lett. 2010, 92, 449-452.

25

Bakhtizin, R. Z.; Oreshkin, A. I.; Murugan, P.; Kumar, V.; Sadowski, J. T.; Fujikawa, Y.; Kawazoe, Y.; Sakurai, T. Adsorption and electronic structure of single C60F18 molecule on Si(111)-7×7 surface. Chem. Phys. Lett. 2009, 482, 307-311.

26

Oreshkin, A. I.; Bakhtizin, R. Z.; Mantsevich, V. N.; Oreshkin, S. I.; Savinov, S. V.; Panov, V. I. STM/STS study of C60F36 molecules adsorption on 7×7-Si(111) surface. JETP Lett. 2012, 95, 666-669.

27

Fujikawa, Y.; Sadowski, J. T.; Kelly, K. F.; Nakayama, K. S.; Nagao, T.; Sakurai, T. Fluorine etching on the Si(111)-7×7 surfaces using fluorinated fullerene. Surf. Sci. 2002, 521, 43-48.

28

Shimizu, T. K.; Jung, J.; Otani, T.; Han, Y. -K.; Kawai, M.; Kim, Y. Two-dimensional superstructure formation of fluorinated fullerene on Au(111): A scanning tunneling microscopy study. ASC Nano 2012, 6, 2679-2685.

29

Sun, Y. M.; Liu, Y. Q.; Zhu, D. B. Advances in organic field-effect transistors. J. Mater. Chem. 2005, 15, 53-65.

30

Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M. et al. STM study of C60F18 high dipole moment molecules on Au(111). Surf. Sci. 2015, 641, 248-251.

31

Lebedev, A. M.; Sukhanov, L. P.; Brzhezinskaya, M. M.; Men'shikov, K. A.; Svechnikov, N. Y.; Chumakov, R. G.; Stankevich, V. G. Experimentally observed orientation of C60F18 molecules on the nickel single crystal (100) surface. J. Surf. Investig. -X-Ray Synch. Neutron Tech. 2012, 6, 833-839.

32

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.; Colchero, J.; Gómez-Herrero, J.; Baro, A. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

33

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

34

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

35

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

36

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

37

Abel, M.; Dmitriev, A.; Fasel, R.; Lin, N.; Barth, J. V.; Kern, K. Scanning tunneling microscopy and X-ray photoelectron diffraction investigation of C60 films on Cu(100). Phys. Rev. B 2003, 67, 245407.

38

Migani, A.; Illas, F. A systematic study of the structure and bonding of halogens on low-index transition metal surfaces. J. Phys. Chem. B 2006, 110, 11894-11906.

39

Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998-2001.

40

Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805-813.

41

Kokalj, A. Electrostatic model for treating long-range lateral interactions between polar molecules adsorbed on metal surfaces. Phys. Rev. B 2011, 84, 045418.

42

Li, W. -X.; Stampfl, C.; Scheffler, M. Oxygen adsorption on Ag(111): A density-functional theory investigation. Phys. Rev. B 2002, 65, 075407.

43

Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 2004, 306, 242-247.

44

Berner, S.; Brunner, M.; Ramoino, L.; Suzuki, H.; Güntherodt, H. J.; Jung, T. A. Time evolution analysis of a 2D solid-gas equilibrium: A model system for molecular adsorption and diffusion. Chem. Phys. Lett. 2001, 348, 175-181.

45

Berner, S.; de Wild, M.; Ramoino, L.; Ivan, S.; Baratoff, A.; Güntherodt, H. -J.; Suzuki, H.; Schlettwein, D.; Jung, T. A. Adsorption and two-dimensional phases of a large polar molecule: Sub-phthalocyanine on Ag(111). Phys. Rev. B 2003, 68, 115410.

46

Wu, K. H.; Fujikawa, Y.; Nagao, T.; Hasegawa, Y.; Nakayama, K. S.; Xue, Q. K.; Wang, E. G.; Briere, T.; Kumar, V.; Kawazoe, Y. et al. Na Adsorption on the Si(111)-(7×7) surface: From two-dimensional gas to nanocluster array. Phys. Rev. Lett. 2003, 91, 126101.

47

Wu, K. H.; Fujikawa, Y.; Briere, T.; Kumar, V.; Kawazoe, Y.; Sakurai, T. Dynamics and nano-clustering of alkali metals (Na, K) on the Si(111)-(7×7) surface. Ultramicroscopy 2005, 105, 32-41.

Nano Research
Pages 2069-2082
Cite this article:
Oreshkin AI, Muzychenko DA, Oreshkin SI, et al. Real-time decay of fluorinated fullerene molecules on Cu(001) surface controlled by initial coverage. Nano Research, 2018, 11(4): 2069-2082. https://doi.org/10.1007/s12274-017-1823-9

671

Views

15

Crossref

N/A

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 29 March 2017
Revised: 29 July 2017
Accepted: 25 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return