Sort:
Research Article Issue
Single and multi domain buckled germanene phases on Al(111) surface
Nano Research 2019, 12(12): 2988-2996
Published: 25 October 2019
Abstract PDF (5.8 MB) Collect
Downloads:29

The simultaneous formation of single domain (3×3) and multi domain (√7×√7)R(±19.1°) germanene phases on Al(111) surface in the sub-monolayer range was studied using scanning tunneling microscopy (STM) and density functional theory (DFT) based simulations. Experimental results revealed that both germanene phases nucleate and grow independently from each other and regardless of Al substrate temperature within significantly expanded range Ts = 27–200 ℃. Our results unambiguously showed that STM images with hexagonal contrast yield correct-resolved structure for both germanene phases, while honeycomb contrast is a result of an artificial tip-induced STM resolution. First-principles calculations suggested atomic models with strongly buckled germanene (2×2)/Al(111)(3×3) and (√3×√3)R30°/Al(111)(√7×√7)R(±19.1°) with one of eight and one of six Ge atoms protruding upward respectively, that consistently describe the experimentally observed STM images both for single and multi domain surface phases. According to the DFT based simulations both germanene (2×2) and (√3×√3)R30° superstructures have a stretched lattice strain with respect to the ideal free-standing germanene by 6.2% and 13.9%, respectively. Hence, numerous small domains separated by domain boundaries in the (√3×√3)R307Al(111)(√7×√7)R(±19.1°) germanene phase tend to reduce the surface energy and prevent the formation of extended single domains, in contrast to the (2×2)/Al(111)(3×3) phase. However, our experimental results showed that the nucleation and growth of germanene on Al(111) surface yield strong modifications of Al surface even at room temperature (RT), which may be contributed to the formation of Al-Ge alloy due to Ge surface solid-states reactivity that was ignored in recent studies. It is already evident from our present findings that the role of Al atoms in the formation of (3×3) and (√7×√7)R(±19.1°) germanene phases is worthy to be carefully studied in the future, which could be an important knowledge for large-quantity fabrication of germanene on aluminum.

Research Article Issue
Real-time decay of fluorinated fullerene molecules on Cu(001) surface controlled by initial coverage
Nano Research 2018, 11(4): 2069-2082
Published: 19 March 2018
Abstract PDF (3.2 MB) Collect
Downloads:11

In this study, the evolution of C60F18 molecules on a Cu(001) surface was studied by means of scanning tunneling microscopy and density functional theory calculations. The results showed that fluorinated fullerenes (tortoise-shaped polar C60F18) decay on Cu(001) surfaces by a step-by-step detachment of F atoms from the C60 cage. The most favorable adsorption configuration was realized when the F atoms of C60F18 pointed towards the Cu surface and six F atoms were detached from it. The results also showed that a further decay of C60F12 molecules strongly depended on the initial C60F18 coverage. The detached F atoms initially formed a two-dimensional (2D) gas phase which then slowly transformed into F-induced surface structures. The degree of contact between the C60F12 molecules and the Cu(001) surface depended on the density of the 2D gas phase. Hence, the life-time of fluorinated fullerenes was determined by the density of the 2D gas phase, which was affected by the formation of new F-induced structures and the decay of C60F12 molecules.

Total 2