Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g-1, respectively.
Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.
Sun, X. L.; Yan, C. L.; Chen, Y.; Si, W. P.; Deng, J. W.; Oswald, S.; Liu, L. F.; Schmidt, O. G. Three-dimensionally "curved" NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv. Energy Mater. 2014, 4, 1300912.
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.
Sun, X. L.; Si, W. P.; Liu, X. H.; Deng, J. W.; Xi, L. X.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 2014, 9, 168-175.
Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859-3867.
Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Papandrea, B.; Huang, Y.; Duan, X. F. Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 5345-5350.
Cong, L.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.
Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613-3618.
Yun, Y. S.; Park, Y. U.; Chang, S. J.; Kim, B. H.; Choi, J.; Wang, J.; Zhang, D.; Braun, P. V.; Jin, H. J.; Kang, K. Crumpled graphene paper for high power sodium battery anode. Carbon 2016, 99, 658-664.
Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1301584.
Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56-60.
Tanaka, U.; Sogabe, T.; Sakagoshi, H.; Ito, M.; Tojo, T. Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon 2001, 39, 931-936.
Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.
Fu, R. W.; Baumann, T. F.; Cronin, S.; Dresselhaus, G.; Dresselhaus, M. S.; Satcher Jr, J. H. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir 2005, 21, 2647-2651.
Zhang, H.; Zhang, G. H.; Li, Z. Q.; Qu, K.; Wang, L.; Zeng, W.; Zhang, Q. F.; Duan, H. G. Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J. Mater. Chem. A 2016, 4, 10585-10592.
Zhou, R. F.; Qiao, S. Z. An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chem. Commun. 2015, 51, 7516-7519.
Wen, Z.; Wang, Q.; Zhang, Q.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772-2778.
Van Lam, D.; Jo, K.; Kim, C. H.; Kim, J. H.; Lee, H. J.; Lee, S. M. Activated carbon textile via chemistry of metal extraction for supercapacitors. ACS Nano 2016, 10, 11351-11359.
Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379-386.
Teng, M. M.; Qiao, J. L.; Li, F. T.; Bera, P. K. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 2012, 50, 2877-2886.
Li, W. H.; Li, M. S.; Wang, M.; Zeng, L. C.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693-701.
Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325-2329.
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.
Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156-2167.
Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615-1621.
Zhang, F.; Yuan, C. Z.; Zhu, J. J.; Wang, J.; Zhang, X. G.; Lou, X. W. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 2013, 23, 3909-3915.
Li, H. B.; Kang, W. J.; Xi, B. J.; Yan, Y.; Bi, H. Y.; Zhu, Y. C.; Qian, Y. T. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles. Carbon 2010, 48, 464-469.
Schaper, A. K.; Hou, H.; Greiner, A.; Schneider, R.; Phillipp, F. Copper nanoparticles encapsulated in multi-shell carbon cages. Appl. Phys. A 2004, 78, 73-77.
Bokhonov, B. B.; Novopashin, S. A. In situ investigation of morphological and phase changes during thermal annealing and oxidation of carbon-encapsulated copper nanoparticles. J. Nanopart. Res. 2010, 12, 2771-2777.
Nam, D. H.; Lee, J. H.; Kim, N. R.; Lee, Y. Y.; Yeon, H. W.; Lee, S. Y.; Joo, Y. C. One-step structure modulation of electrospun metal-loaded carbon nanofibers: Redox reaction controlled calcination. Carbon 2015, 82, 273-281.
Bulushev, D. A.; Chuvilin, A. L.; Sobolev, V. I.; Stolyarova, S. G.; Shubin, Y. V.; Asanov, I. P.; Ishchenko, A. V.; Magnani, G.; Riccò, M.; Okotrub, A. V. et al. Copper on carbon materials: Stabilization by nitrogen doping. J. Mater. Chem. A 2017, 5, 10574-10583.
Nam, D. H.; Kim, J. W.; Lee, J. H.; Lee, S. Y.; Shin, H. A. S.; Lee, S. H.; Joo, Y. C. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 11021-11030.
Wang, C. D.; Lan, M. H.; Zhang, Y.; Bian, H. D.; Yuen, M. F.; Ostrikov, K.; Jiang, J. J.; Zhang, W. J.; Li, Y. Y.; Lu, J. Fe1-xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chem. 2016, 18, 3029-3039.
Zhang, H.; Tang, Z. Y.; Zhang, K.; Wang, L.; Shi, H. M.; Zhang, G. H.; Duan, H. G. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries. Electrochim. Acta 2017, 247, 692-700.
Wang, L.; Zhang, G. H.; Zhang, X. J.; Shi, H. M.; Zeng, W.; Zhang, H.; Liu, Q.; Li, C. C.; Liu, Q. H.; Duan, H. G. Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 14801-14810.
Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653-2659.
Zhu, J.; Shan, Y.; Wang, T.; Sun, H. T.; Zhao, Z. P.; Mei, L.; Fan, Z.; Xu, Z.; Shakir, I.; Huang, Y. et al. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 2016, 7, 13432.
Wang, C. D.; Xu, J. L.; Yuen, M. F.; Zhang, J.; Li, Y. Y.; Chen, X. F.; Zhang, W. J. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Funct. Mater. 2014, 24, 6372-6380.
Sun, X. L.; Hao, G. P.; Lu, X. Y.; Xi, L. X.; Liu, B.; Si, W. P.; Ma, C. S.; Liu, Q. M.; Zhang, Q.; Kaskel, S. et al. High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J. Mater. Chem. A 2016, 4, 10166-10173.
Tang, Z. Y.; Zhang, G. H.; Zhang, H.; Wang, L.; Shi, H. M.; Wei, D. H.; Duan, H. G. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. 2018, 10, 75-84.
Wang, J.; Wang, K.; Wang, F. B.; Xia, X. H. Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nat. Commun. 2014, 5, 5285.
Yin, H.; Cao, M. L.; Yu, X. X.; Li, C.; Shen, Y.; Zhu, M. Q. Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Adv. 2017, 7, 13250-13256.
Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97-102.
Ji, L. W.; Yao, Y. F.; Toprakci, O.; Lin, Z.; Liang, Y. Z.; Shi, Q.; Medford, A. J.; Millns, C. R.; Zhang, X. W. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 2050-2056.
Wang, D. N.; Yang, J. L.; Li, X. F.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 2013, 6, 2900-2906.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.
Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996-1004.
Zheng, F. C.; Xia, G. L.; Yang, Y.; Chen, Q. W. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637-9645.
Jian, Z. L.; Bommier, C.; Luo, L. L.; Li, Z. F.; Wang, W. T.; Wang, C. M.; Greaney, P. A.; Ji, X. L. Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 2017, 29, 2314-2320.
Chen, Z.; Wang, T. H.; Zhang, M.; Cao, G. Z. A phase-separation route to synthesize porous CNTs with excellent stability for Na+ storage. Small 2017, 13, 1604045.
Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328-334.
Zhu, J. D.; Chen, C.; Lu, Y.; Ge, Y. Q.; Jiang, H.; Fu, K.; Zhang, X. W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 2015, 94, 189-195.
Li, D. D.; Chen, H. B.; Liu, G. X.; Wei, M.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 2015, 94, 888-894.