AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage

Hang Zhang1Guanhua Zhang2( )Zhiqin Li2Ke Qu3Huimin Shi2Qingfeng Zhang2Huigao Duan2Jianhui Jiang1( )
College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyNational Engineering Research Center for High Efficiency GrindingCollege of Mechanical and Vehicle EngineeringHunan UniversityChangsha410082China
Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMassachusetts02139USA
Show Author Information

Graphical Abstract

Abstract

We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g-1, respectively.

Electronic Supplementary Material

Download File(s)
12274_2017_1953_MOESM1_ESM.pdf (4.8 MB)

References

1

Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

2

Sun, X. L.; Yan, C. L.; Chen, Y.; Si, W. P.; Deng, J. W.; Oswald, S.; Liu, L. F.; Schmidt, O. G. Three-dimensionally "curved" NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv. Energy Mater. 2014, 4, 1300912.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

4

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

5

Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.

6

Sun, X. L.; Si, W. P.; Liu, X. H.; Deng, J. W.; Xi, L. X.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 2014, 9, 168-175.

7

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859-3867.

8

Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Papandrea, B.; Huang, Y.; Duan, X. F. Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 5345-5350.

9

Cong, L.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

10

Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613-3618.

11

Yun, Y. S.; Park, Y. U.; Chang, S. J.; Kim, B. H.; Choi, J.; Wang, J.; Zhang, D.; Braun, P. V.; Jin, H. J.; Kang, K. Crumpled graphene paper for high power sodium battery anode. Carbon 2016, 99, 658-664.

12

Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1301584.

13

Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56-60.

14

Tanaka, U.; Sogabe, T.; Sakagoshi, H.; Ito, M.; Tojo, T. Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon 2001, 39, 931-936.

15

Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932-4937.

16

Fu, R. W.; Baumann, T. F.; Cronin, S.; Dresselhaus, G.; Dresselhaus, M. S.; Satcher Jr, J. H. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir 2005, 21, 2647-2651.

17

Zhang, H.; Zhang, G. H.; Li, Z. Q.; Qu, K.; Wang, L.; Zeng, W.; Zhang, Q. F.; Duan, H. G. Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J. Mater. Chem. A 2016, 4, 10585-10592.

18

Zhou, R. F.; Qiao, S. Z. An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chem. Commun. 2015, 51, 7516-7519.

19

Wen, Z.; Wang, Q.; Zhang, Q.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772-2778.

20

Van Lam, D.; Jo, K.; Kim, C. H.; Kim, J. H.; Lee, H. J.; Lee, S. M. Activated carbon textile via chemistry of metal extraction for supercapacitors. ACS Nano 2016, 10, 11351-11359.

21

Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379-386.

22

Teng, M. M.; Qiao, J. L.; Li, F. T.; Bera, P. K. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 2012, 50, 2877-2886.

23

Li, W. H.; Li, M. S.; Wang, M.; Zeng, L. C.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693-701.

24

Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325-2329.

25

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.

26

Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156-2167.

27

Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615-1621.

28

Zhang, F.; Yuan, C. Z.; Zhu, J. J.; Wang, J.; Zhang, X. G.; Lou, X. W. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 2013, 23, 3909-3915.

29

Li, H. B.; Kang, W. J.; Xi, B. J.; Yan, Y.; Bi, H. Y.; Zhu, Y. C.; Qian, Y. T. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles. Carbon 2010, 48, 464-469.

30

Schaper, A. K.; Hou, H.; Greiner, A.; Schneider, R.; Phillipp, F. Copper nanoparticles encapsulated in multi-shell carbon cages. Appl. Phys. A 2004, 78, 73-77.

31

Bokhonov, B. B.; Novopashin, S. A. In situ investigation of morphological and phase changes during thermal annealing and oxidation of carbon-encapsulated copper nanoparticles. J. Nanopart. Res. 2010, 12, 2771-2777.

32

Nam, D. H.; Lee, J. H.; Kim, N. R.; Lee, Y. Y.; Yeon, H. W.; Lee, S. Y.; Joo, Y. C. One-step structure modulation of electrospun metal-loaded carbon nanofibers: Redox reaction controlled calcination. Carbon 2015, 82, 273-281.

33

Bulushev, D. A.; Chuvilin, A. L.; Sobolev, V. I.; Stolyarova, S. G.; Shubin, Y. V.; Asanov, I. P.; Ishchenko, A. V.; Magnani, G.; Riccò, M.; Okotrub, A. V. et al. Copper on carbon materials: Stabilization by nitrogen doping. J. Mater. Chem. A 2017, 5, 10574-10583.

34

Nam, D. H.; Kim, J. W.; Lee, J. H.; Lee, S. Y.; Shin, H. A. S.; Lee, S. H.; Joo, Y. C. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 11021-11030.

35

Wang, C. D.; Lan, M. H.; Zhang, Y.; Bian, H. D.; Yuen, M. F.; Ostrikov, K.; Jiang, J. J.; Zhang, W. J.; Li, Y. Y.; Lu, J. Fe1-xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chem. 2016, 18, 3029-3039.

36

Zhang, H.; Tang, Z. Y.; Zhang, K.; Wang, L.; Shi, H. M.; Zhang, G. H.; Duan, H. G. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries. Electrochim. Acta 2017, 247, 692-700.

37

Wang, L.; Zhang, G. H.; Zhang, X. J.; Shi, H. M.; Zeng, W.; Zhang, H.; Liu, Q.; Li, C. C.; Liu, Q. H.; Duan, H. G. Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 14801-14810.

38

Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653-2659.

39

Zhu, J.; Shan, Y.; Wang, T.; Sun, H. T.; Zhao, Z. P.; Mei, L.; Fan, Z.; Xu, Z.; Shakir, I.; Huang, Y. et al. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 2016, 7, 13432.

40

Wang, C. D.; Xu, J. L.; Yuen, M. F.; Zhang, J.; Li, Y. Y.; Chen, X. F.; Zhang, W. J. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Funct. Mater. 2014, 24, 6372-6380.

41

Sun, X. L.; Hao, G. P.; Lu, X. Y.; Xi, L. X.; Liu, B.; Si, W. P.; Ma, C. S.; Liu, Q. M.; Zhang, Q.; Kaskel, S. et al. High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J. Mater. Chem. A 2016, 4, 10166-10173.

42

Tang, Z. Y.; Zhang, G. H.; Zhang, H.; Wang, L.; Shi, H. M.; Wei, D. H.; Duan, H. G. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. 2018, 10, 75-84.

43

Wang, J.; Wang, K.; Wang, F. B.; Xia, X. H. Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nat. Commun. 2014, 5, 5285.

44

Yin, H.; Cao, M. L.; Yu, X. X.; Li, C.; Shen, Y.; Zhu, M. Q. Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Adv. 2017, 7, 13250-13256.

45

Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97-102.

46

Ji, L. W.; Yao, Y. F.; Toprakci, O.; Lin, Z.; Liang, Y. Z.; Shi, Q.; Medford, A. J.; Millns, C. R.; Zhang, X. W. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 2050-2056.

47

Wang, D. N.; Yang, J. L.; Li, X. F.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 2013, 6, 2900-2906.

48

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845-854.

49

Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996-1004.

50

Zheng, F. C.; Xia, G. L.; Yang, Y.; Chen, Q. W. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637-9645.

51

Jian, Z. L.; Bommier, C.; Luo, L. L.; Li, Z. F.; Wang, W. T.; Wang, C. M.; Greaney, P. A.; Ji, X. L. Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 2017, 29, 2314-2320.

52

Chen, Z.; Wang, T. H.; Zhang, M.; Cao, G. Z. A phase-separation route to synthesize porous CNTs with excellent stability for Na+ storage. Small 2017, 13, 1604045.

53

Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328-334.

54

Zhu, J. D.; Chen, C.; Lu, Y.; Ge, Y. Q.; Jiang, H.; Fu, K.; Zhang, X. W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 2015, 94, 189-195.

55

Li, D. D.; Chen, H. B.; Liu, G. X.; Wei, M.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 2015, 94, 888-894.

Nano Research
Pages 3791-3801
Cite this article:
Zhang H, Zhang G, Li Z, et al. Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Research, 2018, 11(7): 3791-3801. https://doi.org/10.1007/s12274-017-1953-0

790

Views

17

Crossref

N/A

Web of Science

15

Scopus

2

CSCD

Altmetrics

Received: 14 September 2017
Revised: 13 November 2017
Accepted: 07 December 2017
Published: 02 August 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017
Return