Sort:
Research Article Issue
Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells
Nano Research 2021, 14(5): 1355-1363
Published: 05 January 2021
Abstract PDF (5.1 MB) Collect
Downloads:154

Despite great progress of lithium-sulfur (Li-S) battery performance at the laboratory-level, both key parameters and challenges at cell scales to achieve practical high energy density require high-sulfur-loading cathodes and lean electrolytes. Herein, a novel carbon foam integrated by hollow carbon bubble nanoreactors with ultrahigh pore volume of 6.9 cm3·g-1 is meticulously designed for ultrahigh sulfur content up to 96 wt.%. Tailoring polysulfide trapping and ion/electron transport kinetics during the charge-discharge process can be achieved by adjusting the wall thickness of hollow carbon bubbles. And a further in-depth understanding of electrochemical reaction mechanism for the cathode is impelled by the in-situ Raman spectroscopy. As a result, the as-prepared cathode delivers high specific capacitances of 1,269 and 695 mAh·g-1 at 0.1 and 5 C, respectively. Furthermore, Li-S pouch cells with high areal sulfur loading of 6.9 mg·cm-2 yield exceptional practical energy density of 382 Wh·kg-1 under lean electrolyte of 3.5 μL·mg-1, which demonstrates the great potential for realistic high-energy Li-S batteries.

Open Access Topical Review Issue
Emerging miniaturized energy storage devices for microsystem applications: from design to integration
International Journal of Extreme Manufacturing 2020, 2(4): 042001
Published: 13 October 2020
Abstract PDF (10.5 MB) Collect
Downloads:10

The rapid progress of micro/nanoelectronic systems and miniaturized portable devices has tremendously increased the urgent demands for miniaturized and integrated power supplies. Miniaturized energy storage devices (MESDs), with their excellent properties and additional intelligent functions, are considered to be the preferable energy supplies for uninterrupted powering of microsystems. In this review, we aim to provide a comprehensive overview of the background, fundamentals, device configurations, manufacturing processes, and typical applications of MESDs, including their recent advances. Particular attention is paid to advanced device configurations, such as two-dimensional (2D) stacked, 2D planar interdigital, 2D arbitrary-shaped, three-dimensional planar, and wire-shaped structures, and their corresponding manufacturing strategies, such as printing, scribing, and masking techniques. Additionally, recent developments in MESDs, including microbatteries and microsupercapacitors, as well as microhybrid metal ion capacitors, are systematically summarized. A series of on-chip microsystems, created by integrating functional MESDs, are also highlighted. Finally, the remaining challenges and future research scope on MESDs are discussed.

Research Article Issue
Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage
Nano Research 2018, 11(7): 3791-3801
Published: 02 August 2018
Abstract PDF (2 MB) Collect
Downloads:20

We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g-1, respectively.

Total 3