AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution

Sanzhao Song1,2,§Jing Zhou1,§Shuo Zhang1( )Linjuan Zhang1Jiong Li1Yu Wang1Ling Han1Youwen Long3,4Zhiwei Hu5Jian-Qiang Wang1,2( )
Shanghai Institute of Applied Physics Chinese Academy of SciencesShanghai201800China
University of Chinese Academy of SciencesBeijing100049China
Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of SciencesBeijing100190China
Collaborative Innovation Center of Quantum MatterBeijing100190China
Max Planck Institute for Chemical Physics of Solids Nöthnitzer Strasse 40Dresden01187Germany

§Sanzhao Song and Jing Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The development of an efficient and low-cost electrocatalyst for the oxygen evolution reaction (OER) via an eco-efficient route is a desirable, although challenging, outcome for overall water splitting. Herein, an iron-rich La0.6Sr0.4Co0.2Fe0.8O2.9 (LSCF28) perovskite with an open porous topographic structure was developed as an electrocatalyst by a straightforward molten-salt synthesis approach. It was found that porosity correlates with both the iron content and the molten-salt approach. Benefiting from the large surface area, high activity of the porous internal surface, and the optimal electronic configuration of redox sites, this inexpensive material exhibits high performance with a large mass activity of 40.8 A·g–1 at a low overpotential of 0.345 V in 0.1 M KOH, surpassing the state-of-the-art precious metal IrO2 catalyst and other well-known perovskites, such as Ba0.5Sr0.5Co0.8Fe0.2O3 and SrCoO2.7. Our work illustrates that the molten-salt method is an effective route to generate porous structures in perovskite oxides, which is important for energy conversion and storage devices.

Electronic Supplementary Material

Download File(s)
12274_2018_2065_MOESM1_ESM.pdf (2.4 MB)

References

1

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

2

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474-6502.

3

Montoya, J. H.; Seitz, L. C.; Chakthranont, P.; Vojvodic, A.; Jaramillo, T. F.; NØrskov, J. K. Materials for solar fuels and chemicals. Nat. Mater. 2017, 16, 70-81.

4

Koper, M. T. M. Hydrogen electrocatalysis: A basic solution. Nat. Chem. 2013, 5, 255-256.

5

Gasteiger, H. A.; Marković, N. M. Just a dream—or future reality? Science. 2009, 324, 48-49.

6

Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612-13614.

7

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; NØrskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

8

Gong, M.; Wang, D. -Y.; Chen, C. -C.; Hwang, B. -J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 2016, 9, 28-46.

9

Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869-9921.

10

Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. 2015, 127, 7507-7512.

11

Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, 1401880.

12

Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739-744.

13

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925-931.

14

Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev. 2014, 114, 10292-10368.

15

Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691-1697.

16

Yan, Z. H.; Sun, H. M.; Chen, X.; Fu, X. R.; Chen, C. C.; Cheng, F. Y.; Chen, J. Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Res. , in press, DOI: 10.1007/s12274-017-1869-8.

17

Zhu, Y. L.; Zhou, W.; Shao, Z. P. Perovskite/carbon composites: Applications in oxygen electrocatalysis. Small. 2017, 13, 1603793.

18

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.

19

Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546-550.

20

Zhu, Y. L.; Zhou, W.; Zhong, Y. J.; Bu, Y. F.; Chen, X. Y.; Zhong, Q.; Liu, M. L.; Shao, Z. P. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv. Energy Mater. 2017, 7, 1602122.

21

Mefford, J. T.; Rong, X.; Abakumov, A. M.; Hardin, W. G.; Dai, S.; Kolpak, A. M.; Johnston, K. P.; Stevenson, K. J. Water electrolysis on La1-xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053.

22

Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 2016, 7, 11510.

23

Chen, G.; Zhou, W.; Guan, D. Q.; Sunarso, J.; Zhu, Y. P.; Hu, X. F.; Zhang, W.; Shao, Z. P. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state. Sci. Adv. 2017, 3, e1603206.

24

Zhu, Y. L.; Zhou, W.; Sunarso, J.; Zhong, Y. J.; Shao, Z. P. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862-5872.

25

Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y. -L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.

26

Yagi, S.; Yamada, I.; Tsukasaki, H.; Seno, A.; Murakami, M.; Fujii, H.; Chen, H.; Umezawa, N.; Abe, H.; Nishiyama, N.; Mori, S. Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 2015, 6, 8249.

27

Shao, Z. P.; Zhou, W.; Zhu, Z. H. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Progress in Mater. Sci. 2012, 57, 804-874.

28

Zhu, Y. L.; Zhou, W.; Chen, Z. -G.; Chen, Y. B.; Su, C.; Tadé, M. O.; Shao, Z. P. SrNb0.1Co0.7Fe0.2O3−δ perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution. Angew. Chem., Int. Ed. 2015, 54, 3897-3901.

29

Lee, J. J.; Oh, M. Y.; Nahm, K. S. Effect of ball milling on electrocatalytic activity of perovskite La0.6Sr0.4CoO3-δ applied for lithium air battery. J. Electrochem. Soc. 2016, 163, A244-A250.

30

Hashimoto, S. -I.; Fukuda, Y.; Kuhn, M.; Sato, K.; Yashiro, K.; Mizusaki, J. Thermal and chemical lattice expansibility of La0.6Sr0.4Co1−yFeyO3−δ (y = 0.2, 0.4, 0.6 and 0.8). Solid State Ionics 2011, 186, 37-43.

31

Heel, A.; Holtappels, P.; Hug, P.; Graule, T. Flame spray synthesis of nanoscale La0.6Sr0.4Co0.2Fe0.8O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ as cathode materials for intermediate temperature solid oxide fuel cells. Fuel Cells. 2010, 10, 419-432.

32

Dieterle, L.; Bockstaller, P.; Gerthsen, D.; Hayd, J.; Ivers-Tiffée, E.; Guntow, U. Microstructure of nanoscaled La0.6Sr0.4CoO3-δ cathodes for intermediate-temperature solid oxide fuel cells. Adv. Energy Mater. 2011, 1, 249-258.

33

Morán-Ruiz, A.; Vidal, K.; Larrañaga, A.; Arriortua, M. I. Chemical compatibility and electrical contact of LaNi0.6Co0.4O3−δ (LNC) between Crofer22APU interconnect and La0.6Sr0.4FeO3 (LSF) cathode for IT-SOFC. Fuel Cells 2013, 13, 398-403.

34

Natile, M. M.; Poletto, F.; Galenda, A.; Glisenti, A.; Montini, T.; De Rogatis, L.; Fornasiero, P. La0.6Sr0.4Co1-yFeyO3−δ perovskites: Influence of the Co/Fe atomic ratio on properties and catalytic activity toward alcohol steam-reforming. Chem. Mater. 2008, 20, 2314-2327.

35

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Section A 1976, 32, 751-767.

36

Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. -B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

37

Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961-1968.

38

Liu, X. F.; Antonietti, M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis. Adv. Mater. 2013, 25, 6284-6290.

39

Mao, Y. B.; Banerjee, S.; Wong, S. S. Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 2003, 125, 15718-15719.

40

Kang, J. S.; Lee, H. J.; Kim, G.; Kim, D. H.; Dabrowski, B.; Kolesnik, S.; Lee, H.; Kim, J. Y.; Min, B. I. Electronic structure of the cubic perovskite SrMn1−xFexO3 investigated by X-ray spectroscopies. Phys. Rev. B 2008, 78, 154434.

41

Lin, H. J.; Chin, Y. Y.; Hu, Z.; Shu, G. J.; Chou, F. C.; Ohta, H.; Yoshimura, K.; Hebert, S.; Maignan, A.; Tanaka, A. et al. Local orbital occupation and energy levels of Co in NaxCoO2: A soft X-ray absorption study. Phy. Rev. B 2010, 81, 115138.

42

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; Garcia-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.

43

Hong, W. T.; Stoerzinger, K. A.; Lee, Y. -L.; Giordano, L.; Grimaud, A.; Johnson, A. M.; Hwang, J.; Crumlin, E. J.; Yang, W.; Shao-Horn, Y. Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 2017, 10, 2190-2200.

44

Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684-691.

45

Zhang, H.; Liu, J. Y.; Zhao, G. Q.; Gao, Y. J.; Tyliszczak, T.; Glans, P. A.; Guo, J. H.; Ma, D.; Sun, X. H.; Zhong, J. Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: A soft X-ray spectroscopic study. ACS Appl. Mater. Interfaces 2015, 7, 7863-7868.

46

Zheng, X. L.; Zhang, B.; De Luna, P.; Liang, Y. F.; Comin, R.; Voznyy, O.; Han, L. L.; de Arquer, F. P. G.; Liu, M.; Dinh, C. T. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 2018, 10, 149-154.

47

Wilson, S. A.; Kroll, T.; Decreau, R. A.; Hocking, R. K.; Lundberg, M.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. Iron L-edge X-ray absorption spectroscopy of oxy-picket fence porphyrin: Experimental insight into Fe-O2 bonding. J. Am. Chem. Soc. 2013, 135, 1124-1136.

48

Mizokawa, T.; Wakisaka, Y.; Sudayama, T.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Wadati, H.; Hawthorn, D. G.; Regier, T. Z.; Sawatzky, G. A. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phy. Rev. Let. 2013, 111, 056404.

49

Chen, J. -M.; Chin, Y. -Y.; Valldor, M.; Hu, Z. W.; Lee, J. -M.; Haw, S. -C.; Hiraoka, N.; Ishii, H.; Pao, C. -W.; Tsuei, K. -D. et al. A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3−δ. J. Am. Chem. Soc. 2014, 136, 1514-1519.

50

Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. 2016, 128, 5363-5367.

Nano Research
Pages 4796-4805
Cite this article:
Song S, Zhou J, Zhang S, et al. Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Research, 2018, 11(9): 4796-4805. https://doi.org/10.1007/s12274-018-2065-1

692

Views

35

Crossref

N/A

Web of Science

34

Scopus

1

CSCD

Altmetrics

Received: 18 January 2018
Revised: 07 March 2018
Accepted: 24 March 2018
Published: 20 April 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return