Publications
Sort:
Research Article Issue
Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution
Nano Research 2018, 11 (9): 4796-4805
Published: 20 April 2018
Abstract PDF (1.7 MB) Collect
Downloads:10

The development of an efficient and low-cost electrocatalyst for the oxygen evolution reaction (OER) via an eco-efficient route is a desirable, although challenging, outcome for overall water splitting. Herein, an iron-rich La0.6Sr0.4Co0.2Fe0.8O2.9 (LSCF28) perovskite with an open porous topographic structure was developed as an electrocatalyst by a straightforward molten-salt synthesis approach. It was found that porosity correlates with both the iron content and the molten-salt approach. Benefiting from the large surface area, high activity of the porous internal surface, and the optimal electronic configuration of redox sites, this inexpensive material exhibits high performance with a large mass activity of 40.8 A·g–1 at a low overpotential of 0.345 V in 0.1 M KOH, surpassing the state-of-the-art precious metal IrO2 catalyst and other well-known perovskites, such as Ba0.5Sr0.5Co0.8Fe0.2O3 and SrCoO2.7. Our work illustrates that the molten-salt method is an effective route to generate porous structures in perovskite oxides, which is important for energy conversion and storage devices.

Total 1