Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To promote commercialization of perovskite solar cells (PSCs), low-temperature processed electron transport layer (ETL) with high carrier mobility still needs to be further developed. Here, we reported two-dimensional (2D) tin disulfide (SnS2) nanosheets as ETL in PSCs for the first time. The morphologies of the 2D SnS2 material can be easy controlled by the in situ synthesized method on the conductive fluorine-doped tin oxide (FTO) substrate. We achieved a champion power conversion efficiency (PCE) of 13.63%, with the short-circuit current density (JSC) of 23.70 mA/cm2, open-circuit voltage (VOC) of 0.95 V, and fill factor (FF) of 0.61. The high JSC of PSCs results from effective electron collection of the 2D SnS2 nanosheets from perovskite layer and fast electron transport to the FTO. The low VOC and FF are the results of the lower conduction band of 2D SnS2 (4.23 eV) than that of TiO2 (4.0 eV). These results demonstrate that 2D material is a promising candidate for ETL in PSCs.
Hodes, G. Perovskite-based solar cells. Science 2013, 342, 317-318.
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
Wu, Y. Z.; Yang, X. D.; Chen, W.; Yue, Y. F.; Cai, M. L.; Xie, F. X.; Bi, E. B.; Islam, M.; Han, L. Y. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.
Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944-948.
Dong, Q. S.; Shi, Y. T.; Zhang, C. Y.; Wu, Y. K.; Wang, L. D. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 2017, 40, 336-344.
Zhang, P.; Wu, J.; Zhang, T.; Wang, Y. F.; Liu, D. T.; Chen, H.; Ji, L.; Liu, C. H.; Ahmad, W.; Chen, Z. D. et al. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737.
Wang, K.; Shi, Y. T.; Li, B.; Zhao, L.; Wang, W.; Wang, X. Y.; Bai, X. G.; Wang, S. F.; Hao, C.; Ma, T. L. Amorphous inorganic electron-selective layers for efficient perovskite solar cells: Feasible strategy towards room-temperature fabrication. Adv. Mater. 2016, 28, 1891-1897.
Wang, X.; Deng, L. L.; Wang, L. Y.; Dai, S. M.; Xing, Z.; Zhan, X. X.; Lu, X. Z.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J. Mater. Chem. A 2017, 5, 1706-1712.
Feng, J. S.; Yang, Z.; Yang, D.; Ren, X. D.; Zhu, X. J.; Jin, Z. W.; Zi, W.; Wei, Q. B.; Liu, S. Z. E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 2017, 36, 1-8.
Chen, P.; Yin, X. T.; Que, M. D.; Liu, X. B.; Que, W. X. Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells. J. Mater. Chem. A 2017, 5, 9641-9648.
Peng, H. T.; Sun, W. H.; Li, Y. L.; Yan, W. B.; Yu, P. R.; Zhou, H. P.; Bian, Z. Q.; Huang, C. H. High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. J. Photon. Energy 2016, 6, 022002.
Li, D. B.; Hu, L.; Xie, Y.; Niu, G. D.; Liu, T. F.; Zhou, Y. H.; Gao, L.; Yang, B.; Tang, J. Low-temperature-processed amorphous Bi2S3 film as an inorganic electron transport layer for perovskite solar cells. ACS Photonics 2016, 3, 2122-2128.
Shin, S. S.; Yang, W. S.; Noh, J. H.; Suk, J. H.; Jeon, N. J.; Park, J. H.; Kim, J. S.; Seong, W. M.; Seok, S. I. High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100℃. Nat. Commun. 2015, 6, 7410.
Ko, Y.; Kim, Y. R.; Jang, H.; Lee, C.; Kang, M. G.; Jun, Y. Electrodeposition of SnO2 on FTO and its application in planar heterojunction perovskite solar cells as an electron transport layer. Nanoscale Res. Lett. 2017, 12, 498.
Chen, Z.; Tian, Y. F.; Li, S. J.; Zheng, H. W.; Zhang, W. F. Electrodeposition of arborous structure nanocrystalline SnO2 and application in flexible dye-sensitized solar cells. J. Alloys Compd. 2012, 515, 57-62.
Chen, H.; Liu, D. T.; Wang, Y. F.; Wang, C. Y.; Zhang, T.; Zhang, P.; Sarvari, H.; Chen, Z.; Li, S. B. Enhanced performance of planar perovskite solar cells using low-temperature solution-processed Al-doped SnO2 as electron transport layers. Nanoscale Res. Lett. 2017, 12, 238.
Ren, X. D.; Yang, D.; Yang, Z.; Feng, J. S.; Zhu, X. J.; Niu, J. Z.; Liu, Y. C.; Zhao, W. G.; Liu, S. F. Solution-processed Nb: SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 2421-2429.
Zhu, Z. L.; Bai, Y.; Liu, X.; Chueh, C. C.; Yang, S. H.; Jen, A. K. Y. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv. Mater. 2016, 28, 6478-6484.
Aziz, M.; Abbas, S. S.; Baharom, W. R. W.; Mahmud, W. Z. W. Structure of SnO2 nanoparticles by sol-gel method. Mater. Lett. 2012, 74, 62-64.
Anaraki, E. H.; Kermanpur, A.; Steier, L.; Domanski, K.; Matsui, T.; Tress, W.; Saliba, M.; Abate, A.; Grätzel, M.; Hagfeldt, A. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 2016, 9, 3128-3134.
Dasgupta, U.; Chatterjee, S.; Pal, A. J. Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 172, 353-360.
Huang, P.; Wang, Z. W.; Liu, Y. F.; Zhang, K. C.; Yuan, L. G.; Zhou, Y.; Song, B.; Li, Y. F. Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells. ACS Appl. Mat. Interfaces 2017, 9, 25323-25331.
Liu, J.; Zhuang, D. M.; Luan, H. X.; Cao, M. J.; Xie, M.; Li, X. L. Preparation of Cu(In, Ga)Se2 thin film by sputtering from Cu(In, Ga)Se2 quaternary target. Progr. Nat. Sci. : Mater. Int. 2013, 23, 133-138.
Liu, J.; Zhuang, D. M.; Cao, M. J.; Li, X. L.; Xie, M.; Xu, D. W. Cu(In, Ga)Se2-based solar cells prepared from Se-containing precursors. Vacuum 2014, 102, 26-30.
Javed, Y.; Rafiq, M. A.; Ahmed, N. Pressure-induced changes in the electronic structure and enhancement of the thermoelectric performance of SnS2: A first principles study. RSC Adv. 2017, 7, 38834-38843.
Liu, G. B.; Li, Z. H.; Hasan, T.; Chen, X. S.; Zheng, W.; Feng, W.; Jia, D. C.; Zhou, Y.; Hu, P. A. Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 1989-1995.
Ye, G. L.; Gong, Y. J.; Lei, S. D.; He, Y. M.; Li, B.; Zhang, X.; Jin, Z. H.; Dong, L. L.; Lou, J.; Vajtai, R. et al. Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition. Nano Res. 2017, 10, 2386-2394.
Xia, J.; Zhu, D. D.; Wang, L.; Huang, B.; Huang, X.; Meng, X. M. Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors. Adv. Funct. Mater. 2015, 25, 4255-4261.
Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093-14099.
Liu, G. B.; Qiu, Y. F.; Wang, Z. G.; Zhang, J.; Chen, X. S.; Dai, M. J.; Jia, D. C.; Zhou, Y.; Li, Z. H.; Hu, P. A. Efficiently synergistic hydrogen evolution realized by trace amount of Pt-decorated defect-rich SnS2 nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 37750-37759.
Liu, G. B.; Li, Z. H.; Chen, X. S.; Zheng, W.; Feng, W.; Dai, M. J.; Jia, D. C.; Zhou, Y.; Hu, P. A. Non-planar vertical photodetectors based on free standing two-dimensional SnS2 nanosheets. Nanoscale 2017, 9, 9167-9174.
Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703-3708.
Gao, L. G.; Zhao, E. L.; Yang, S. Z.; Wang, L. K.; Li, Y. Q.; Zhao, Y. Y.; Ma, T. L. Light engineering for bifacial transparent perovskite solar cells with high performance. Opt. Eng. 2017, 56, 117107.
Bai, Y.; Zong, X.; Yu, H.; Chen, Z. G.; Wang, L. Z. Scalable low-cost SnS2 nanosheets as counter electrode building blocks for dye-sensitized solar cells. Chem. -Eur. J. 2014, 20, 8670-8676.
Wei, R. J.; Hu, J. C.; Zhou, T. F.; Zhou, X. L.; Liu, J. X.; Li, J. L. Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties. Acta Mater. 2014, 66, 163-171.
Wang, J.; Qin, M. C.; Tao, H.; Ke, W. J.; Chen, Z.; Wan, J. W.; Qin, P. L.; Xiong, L. B.; Lei, H. W.; Yu, H. Q. et al. Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl. Phys. Lett. 2015, 106, 121104.
You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75-81.
Chen, X.; Tang, L. J.; Yang, S.; Hou, Y.; Yang, H. G. A low-temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells. J. Mater. Chem. A 2016, 4, 6521-6526.
Chen, X.; Yang, S.; Zheng, Y. C.; Chen, Y.; Hou, Y.; Yang, X. H.; Yang, H. G. Multifunctional inverse opal-like TiO2 electron transport layer for efficient hybrid perovskite solar cells. Adv. Sci. 2015, 2, 1500105.
Juarez-Perez, E. J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I. Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 2014, 5, 680-685.
Shi, Y. T.; Zhao, C. Y.; Wei, H. S.; Guo, J. H.; Liang, S. X.; Wang, A. Q.; Zhang, T.; Liu, J. Y.; Ma, T. L. Single-atom catalysis in mesoporous photovoltaics: The principle of utility maximization. Adv. Mater. 2014, 26, 8147-8153.
Yang, D.; Yang, R. X.; Zhang, J.; Yang, Z.; Liu, S. Z.; Li, C. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 2015, 8, 3208-3214.
Li, J. F.; Zhang, Z. L.; Gao, H. P.; Zhang, Y.; Mao, Y. L. Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells. J. Mater. Chem. A 2015, 3, 19476-19482.
Bin Mohd Yusoff, A. R.; Mar Teridi, M. A.; Jang, J. Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells. Nanoscale 2016, 8, 6328-6334.
Liu, J.; Gao, C.; Luo, L. Z.; Ye, Q. Y.; He, X. L.; Ouyang, L. Q.; Guo, X. W.; Zhuang, D. M.; Liao, C.; Mei, J. et al. Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J. Mater. Chem. A 2015, 3, 11750-11755.
Abulikemu, M.; Barbé, J.; El Labban, A.; Eid, J.; Del Gobbo, S. Planar heterojunction perovskite solar cell based on CdS electron transport layer. Thin Solid Films 2017, 636, 512-518.
Hou, Y.; Chen, X.; Yang, S.; Zhong, Y. L.; Li, C. Z.; Zhao, H. J.; Yang, H. G. Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. Nano Energy 2017, 36, 102-109.
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.