Designing a highly efficient non-precious based oxygen reduction reaction (ORR) electrocatalyst is critical for the commercialization of various sustainable energy storage and conversion devices such as metal-air batteries and fuel cells. Herein, we report a convenient strategy to synthesis Fe3O4 embedded in N doped hollow carbon sphere (NHCS) for ORR. What's interesting is that the carbon microsphere is composed of two-dimensional (2D) nanoplate that could provide more exposed active sites. The usage of solid ZnO nanowires as zinc source is crucial to obtain this structure. The Fe3O4@NHCS-2 exhibits better catalytic activity and durability than the commercial Pt/C catalyst. Moreover, it further displays high-performance of Zn-air batteries as a cathode electrocatalyst with a high-power density of 133 mW·cm-2 and high specific capacity of 701 mA·h·g-1. The special hollow structure composed 2D nanoplate, high surface area, as well as synergistic effect between the high active Fe3O4 nanoparticles and N-doped matrix endows this outstanding catalytic activity. The work presented here can be easily extended to prepare metal compounds decorated carbon nanomaterials with special structure for a broad range of energy storage and conversion devices.
- Article type
- Year
- Co-author
To promote commercialization of perovskite solar cells (PSCs), low-temperature processed electron transport layer (ETL) with high carrier mobility still needs to be further developed. Here, we reported two-dimensional (2D) tin disulfide (SnS2) nanosheets as ETL in PSCs for the first time. The morphologies of the 2D SnS2 material can be easy controlled by the in situ synthesized method on the conductive fluorine-doped tin oxide (FTO) substrate. We achieved a champion power conversion efficiency (PCE) of 13.63%, with the short-circuit current density (JSC) of 23.70 mA/cm2, open-circuit voltage (VOC) of 0.95 V, and fill factor (FF) of 0.61. The high JSC of PSCs results from effective electron collection of the 2D SnS2 nanosheets from perovskite layer and fast electron transport to the FTO. The low VOC and FF are the results of the lower conduction band of 2D SnS2 (4.23 eV) than that of TiO2 (4.0 eV). These results demonstrate that 2D material is a promising candidate for ETL in PSCs.