Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Iron sulfide is an attractive anode material for lithium-ion batteries (LIBs) due to its high specific capacity, environmental benignity, and abundant resources. However, its application is hindered by poor cyclability and rate performance, caused by a large volume variation and low conductivity. Herein, iron sulfide porous nanowires confined in an N-doped carbon matrix (FeS@N-C nanowires) are fabricated through a simple amine-assisted solvothermal reaction and subsequent calcination strategy. The as-obtained FeS@N-C nanowires, as an LIB anode, exhibit ultrahigh reversible capacity, superior rate capability, and long-term cycling performance. In particular, a high specific capacity of 1, 061 mAh·g-1 can be achieved at 1 A·g-1 after 500 cycles. Most impressively, it exhibits a high specific capacity of 433 mAh·g-1 even at 5 A·g-1. The superior electrochemical performance is ascribed to the synergistic effect of the porous nanowire structure and the conductive N-doped carbon matrix. These results demonstrate that the synergistic strategy of combining porous nanowires with an N-doped carbon matrix holds great potential for energy storage.
Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.
Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.
Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.
Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.
Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, J. L.; Yue, J., Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.
Choi, S. H.; Kang, Y. C. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 2014, 10, 474–478.
Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273.
Chen, S. H.; Fan, L.; Xu, L. L.; Liu, Q.; Qin, Y.; Lu, B. 100 K cycles: Core–shell H-FeS@C based lithium-ion battery anode. Energy Storage Mater. 2017, 8, 20–27.
Zou, R. J.; Zhang, Z. Y.; Yuen, M. F.; Sun, M. L.; Hu, J. Q.; Lee, C. S.; Zhang, W. J. Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for highperformance lithium-ion batteries. NPG Asia Mater. 2015, 7, e195.
Yu, X. Y.; Yu, L.; Lou, X. W. D. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333.
Kong, D. B.; He, H. Y.; Song, Q.; Wang, B.; Lv, W.; Yang, Q. H.; Zhi, L. J. Rational design of MoS2@graphene nanocables: Towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 2014, 7, 3320–3325.
Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152–2156.
Zhu, C. B.; Kopold, P.; Li, W. L.; van Aken, P. A.; Maier, J.; Yu, Y. A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: Case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv. Sci. 2015, 2, 1500200.
Xu, X. D.; Liu, W.; Kim, Y.; Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today 2014, 9, 604–630.
Meduri, P.; Clark, E.; Kim, J. H.; Dayalan, E.; Sumanasekera, G. U.; Sunkara, M. K. MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett. 2012, 12, 1784–1788.
Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, L. J. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6638–6645.
Feng, C. H.; Zhang, L.; Wang, Z. H.; Song, X. Y.; Sun, K. N.; Wu, F.; Liu, G. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries. J. Power Sources 2014, 269, 550–555.
Chen, Y. M.; Yu, X. Y.; Li, Z.; Paik, U.; Lou, X. W. D. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Adv. Sci. 2016, 2, e1600021.
An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.
Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for highperformance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.
Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Hu, X. L.; Yuan, L. X.; Huang, Y. H. Coral-like a-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 24026–24033.
Gu, Y.; Xu, Y.; Wang, Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl. Mater. Interfaces 2013, 5, 801–806.
Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.
Zhang, L. S.; Huang, Y. P.; Zhang, Y. F.; Gu, H. H.; Fan, W.; Liu, T. X. Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage. Adv. Mater. Interfaces 2016, 3, 1500467.
Fang, W. Y.; Zhao, H. B.; Xie, Y. P.; Fang, J. H.; Xu, J. Q.; Chen, Z. W. Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 2015, 7, 13044–13052.
Li, H.; Su, Y.; Sun, W. W.; Wang, Y. Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: Bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 8345–8353.
Zhu, C. B.; Wen, Y. R.; van Aken, P. A.; Maier, J.; Yu, Y. High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv. Funct. Mater. 2015, 25, 2335–2342.
Hu, H.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. D. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem., Int. Ed. 2016, 55, 9514–9518.
Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.
Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25, 1180–1184.
Gao, M. R.; Yao, W. T.; Yao, H. B.; Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 2009, 131, 7486–7487.
Nath, M.; Choudhury, A.; Kundu, A.; Rao, C. N. R. Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 2003, 15, 2098–2101.
Liu, J.; Song, K. P.; Zhu, C. B.; Chen, C. C.; van Aken, P. A.; Maier, J.; Yu, Y. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. ACS Nano 2014, 8, 7051–7059.
Feldmann, C.; Metzmacher C. Polyol mediated synthesis of nanoscale MS particles (M = Zn, Cd, Hg). J. Mater. Chem. 2001, 11, 2603–2606.
Chen, D.; Tang, K. B.; Shen, G. Z.; Sheng, J.; Fang, Z.; Liu, X. M.; Zheng, H. G.; Qian, Y. T. Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater. Chem. Phys. 2003, 82, 206–209.
Xiong, S.; Shen, J.; Xie, Q.; Gao, Y.; Tang, Q.; Qian, Y. T. A precursor-based route to ZnSe nanowire bundles. Adv. Funct. Mater. 2005, 15, 1787–1792.
Graf, N.; Yegen, E.; Gross, T.; Lippitz, A.; Weigel, W.; Krakert, S.; Terfort, A.; Unger, W. E. S. XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf. Sci. 2009, 603, 2849–2860.
Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026–4035.
Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.
Wei, X. J.; Tang, C. J.; Wang, X. P.; Zhou, L.; Wei, Q. L.; Yan, M. Y.; Sheng, J. Z.; Hu, P.; Wang, B. L.; Mai, L. Q. Copper silicate hydrate hollow spheres constructed by nanotubes encapsulated in reduced graphene oxide as long-life lithium-ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 26572–26578.
Kim, Y.; Goodenough, J. B. Lithium insertion into transitionmetal monosulfides: Tuning the position of the metal 4s band. J. Phys. Chem. C 2008, 112, 15060–15064.
Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.
Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330–5335.
Xing, C. C.; Zhang, D.; Cao, K.; Zhao, S. M.; Wang, X.; Qin, H. Y.; Liu, J. B.; Jiang, Y. Z.; Meng, L. In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 8742–8749.
Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904–2911.
Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.
Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide-graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.
Strauss, E.; Golodnitsky, D.; Peled, E. Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery. Electrochim. Acta 2000, 45, 1519–1525.
Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.
Wei, X. J.; Tang, C. J.; An, Q. Y.; Yan, M. Y.; Wang, X. P.; Hu, P.; Cai, X. Y.; Mai, L. Q. FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 2017, 10, 3202–3211.
Zhang, F. F.; Wang, C. L.; Huang, G.; Yin, D. M.; Wang, L. M. FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J. Power Sources 2016, 328, 56–64.
Xu, X. J.; Liu, J.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhang, L.; Zhu, M. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 2017, 11, 9033–9040.