AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage

Xiujuan Wei§Xin Tan§Jiasheng MengXuanpeng WangPing HuWei YangShuangshuang TanQinyou An( )Liqiang Mai ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhan430070China

§Xiujuan Wei and Xin Tan contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Iron sulfide is an attractive anode material for lithium-ion batteries (LIBs) due to its high specific capacity, environmental benignity, and abundant resources. However, its application is hindered by poor cyclability and rate performance, caused by a large volume variation and low conductivity. Herein, iron sulfide porous nanowires confined in an N-doped carbon matrix (FeS@N-C nanowires) are fabricated through a simple amine-assisted solvothermal reaction and subsequent calcination strategy. The as-obtained FeS@N-C nanowires, as an LIB anode, exhibit ultrahigh reversible capacity, superior rate capability, and long-term cycling performance. In particular, a high specific capacity of 1, 061 mAh·g-1 can be achieved at 1 A·g-1 after 500 cycles. Most impressively, it exhibits a high specific capacity of 433 mAh·g-1 even at 5 A·g-1. The superior electrochemical performance is ascribed to the synergistic effect of the porous nanowire structure and the conductive N-doped carbon matrix. These results demonstrate that the synergistic strategy of combining porous nanowires with an N-doped carbon matrix holds great potential for energy storage.

Electronic Supplementary Material

Download File(s)
12274_2018_2140_MOESM1_ESM.pdf (2.4 MB)

References

1

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

2

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

3

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

4

Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

5

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

6

Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, J. L.; Yue, J., Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.

7

Choi, S. H.; Kang, Y. C. Synthesis for yolk-shell-structured metal sulfide powders with excellent electrochemical performances for lithium-ion batteries. Small 2014, 10, 474–478.

8

Seo, J. W.; Jang, J. T.; Park, S. W.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269–4273.

9

Chen, S. H.; Fan, L.; Xu, L. L.; Liu, Q.; Qin, Y.; Lu, B. 100 K cycles: Core–shell H-FeS@C based lithium-ion battery anode. Energy Storage Mater. 2017, 8, 20–27.

10

Zou, R. J.; Zhang, Z. Y.; Yuen, M. F.; Sun, M. L.; Hu, J. Q.; Lee, C. S.; Zhang, W. J. Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for highperformance lithium-ion batteries. NPG Asia Mater. 2015, 7, e195.

11

Yu, X. Y.; Yu, L.; Lou, X. W. D. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333.

12

Kong, D. B.; He, H. Y.; Song, Q.; Wang, B.; Lv, W.; Yang, Q. H.; Zhi, L. J. Rational design of MoS2@graphene nanocables: Towards high performance electrode materials for lithium ion batteries. Energy Environ. Sci. 2014, 7, 3320–3325.

13

Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Yu, Y.; Maier, J. Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem., Int. Ed. 2014, 53, 2152–2156.

14

Zhu, C. B.; Kopold, P.; Li, W. L.; van Aken, P. A.; Maier, J.; Yu, Y. A general strategy to fabricate carbon-coated 3D porous interconnected metal sulfides: Case study of SnS/C nanocomposite for high-performance lithium and sodium ion batteries. Adv. Sci. 2015, 2, 1500200.

15

Xu, X. D.; Liu, W.; Kim, Y.; Cho, J. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges. Nano Today 2014, 9, 604–630.

16

Meduri, P.; Clark, E.; Kim, J. H.; Dayalan, E.; Sumanasekera, G. U.; Sunkara, M. K. MoO3-x nanowire arrays as stable and high-capacity anodes for lithium ion batteries. Nano Lett. 2012, 12, 1784–1788.

17

Lai, C. H.; Huang, K. W.; Cheng, J. H.; Lee, C. Y.; Hwang, B. J.; Chen, L. J. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6638–6645.

18

Feng, C. H.; Zhang, L.; Wang, Z. H.; Song, X. Y.; Sun, K. N.; Wu, F.; Liu, G. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries. J. Power Sources 2014, 269, 550–555.

19

Chen, Y. M.; Yu, X. Y.; Li, Z.; Paik, U.; Lou, X. W. D. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Adv. Sci. 2016, 2, e1600021.

20

An, Q. Y.; Lv, F.; Liu, Q. Q.; Han, C. H.; Zhao, K. N.; Sheng, J. Z.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. Nano Lett. 2014, 14, 6250–6256.

21

Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for highperformance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.

22

Liu, Y.; Qiao, Y.; Zhang, W. X.; Li, Z.; Hu, X. L.; Yuan, L. X.; Huang, Y. H. Coral-like a-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. J. Mater. Chem. 2012, 22, 24026–24033.

23

Gu, Y.; Xu, Y.; Wang, Y. Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage. ACS Appl. Mater. Interfaces 2013, 5, 801–806.

24

Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.

25

Zhang, L. S.; Huang, Y. P.; Zhang, Y. F.; Gu, H. H.; Fan, W.; Liu, T. X. Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage. Adv. Mater. Interfaces 2016, 3, 1500467.

26

Fang, W. Y.; Zhao, H. B.; Xie, Y. P.; Fang, J. H.; Xu, J. Q.; Chen, Z. W. Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 2015, 7, 13044–13052.

27

Li, H.; Su, Y.; Sun, W. W.; Wang, Y. Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: Bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 8345–8353.

28

Zhu, C. B.; Wen, Y. R.; van Aken, P. A.; Maier, J.; Yu, Y. High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv. Funct. Mater. 2015, 25, 2335–2342.

29

Hu, H.; Zhang, J. T.; Guan, B. Y.; Lou, X. W. D. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem., Int. Ed. 2016, 55, 9514–9518.

30

Wang, X. F.; Xiang, Q. Y.; Liu, B.; Wang, L. J.; Luo, T.; Chen, D.; Shen, G. Z. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci. Rep. 2013, 3, 2007.

31

Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv. Mater. 2013, 25, 1180–1184.

32

Gao, M. R.; Yao, W. T.; Yao, H. B.; Yu, S. H. Synthesis of unique ultrathin lamellar mesostructured CoSe2-amine (protonated) nanobelts in a binary solution. J. Am. Chem. Soc. 2009, 131, 7486–7487.

33

Nath, M.; Choudhury, A.; Kundu, A.; Rao, C. N. R. Synthesis and characterization of magnetic iron sulfide nanowires. Adv. Mater. 2003, 15, 2098–2101.

34

Liu, J.; Song, K. P.; Zhu, C. B.; Chen, C. C.; van Aken, P. A.; Maier, J.; Yu, Y. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. ACS Nano 2014, 8, 7051–7059.

35

Feldmann, C.; Metzmacher C. Polyol mediated synthesis of nanoscale MS particles (M = Zn, Cd, Hg). J. Mater. Chem. 2001, 11, 2603–2606.

36

Chen, D.; Tang, K. B.; Shen, G. Z.; Sheng, J.; Fang, Z.; Liu, X. M.; Zheng, H. G.; Qian, Y. T. Microwave-assisted synthesis of metal sulfides in ethylene glycol. Mater. Chem. Phys. 2003, 82, 206–209.

37

Xiong, S.; Shen, J.; Xie, Q.; Gao, Y.; Tang, Q.; Qian, Y. T. A precursor-based route to ZnSe nanowire bundles. Adv. Funct. Mater. 2005, 15, 1787–1792.

38

Graf, N.; Yegen, E.; Gross, T.; Lippitz, A.; Weigel, W.; Krakert, S.; Terfort, A.; Unger, W. E. S. XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf. Sci. 2009, 603, 2849–2860.

39

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3–carbon nanofibers as advanced anode material for Li-ion batteries. ACS Nano 2015, 9, 4026–4035.

40

Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.

41

Wei, X. J.; Tang, C. J.; Wang, X. P.; Zhou, L.; Wei, Q. L.; Yan, M. Y.; Sheng, J. Z.; Hu, P.; Wang, B. L.; Mai, L. Q. Copper silicate hydrate hollow spheres constructed by nanotubes encapsulated in reduced graphene oxide as long-life lithium-ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 26572–26578.

42

Kim, Y.; Goodenough, J. B. Lithium insertion into transitionmetal monosulfides: Tuning the position of the metal 4s band. J. Phys. Chem. C 2008, 112, 15060–15064.

43

Xu, C.; Zeng, Y.; Rui, X. H.; Xiao, N.; Zhu, J. X.; Zhang, W. Y.; Chen, J.; Liu, W. L.; Tan, H. T.; Hng, H. H. et al. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano 2012, 6, 4713–4721.

44

Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330–5335.

45

Xing, C. C.; Zhang, D.; Cao, K.; Zhao, S. M.; Wang, X.; Qin, H. Y.; Liu, J. B.; Jiang, Y. Z.; Meng, L. In situ growth of FeS microsheet networks with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 8742–8749.

46

Li, L.; Gao, C. T.; Kovalchuk, A.; Peng, Z. W.; Ruan, G. D.; Yang, Y.; Fei, H. L.; Zhong, Q. F.; Li, Y. L.; Tour, J. M. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 2016, 9, 2904–2911.

47

Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.

48

Lu, Y. Y.; Zhang, N.; Jiang, S.; Zhang, Y. D.; Zhou, M.; Tao, Z. L.; Archer, L. A.; Chen, J. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide-graphene foam architecture. Nano Lett. 2017, 17, 3668–3674.

49

Strauss, E.; Golodnitsky, D.; Peled, E. Study of phase changes during 500 full cycles of Li/composite polymer electrolyte/FeS2 battery. Electrochim. Acta 2000, 45, 1519–1525.

50

Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579–585.

51

Wei, X. J.; Tang, C. J.; An, Q. Y.; Yan, M. Y.; Wang, X. P.; Hu, P.; Cai, X. Y.; Mai, L. Q. FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 2017, 10, 3202–3211.

52

Zhang, F. F.; Wang, C. L.; Huang, G.; Yin, D. M.; Wang, L. M. FeS2@C nanowires derived from organic-inorganic hybrid nanowires for high-rate and long-life lithium-ion batteries. J. Power Sources 2016, 328, 56–64.

53

Xu, X. J.; Liu, J.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Zhang, L.; Zhu, M. Robust pitaya-structured pyrite as high energy density cathode for high-rate lithium batteries. ACS Nano 2017, 11, 9033–9040.

Nano Research
Pages 6206-6216
Cite this article:
Wei X, Tan X, Meng J, et al. Amine-assisted synthesis of FeS@N-C porous nanowires for highly reversible lithium storage. Nano Research, 2018, 11(12): 6206-6216. https://doi.org/10.1007/s12274-018-2140-7

883

Views

20

Crossref

N/A

Web of Science

21

Scopus

2

CSCD

Altmetrics

Received: 08 April 2018
Revised: 30 May 2018
Accepted: 30 June 2018
Published: 19 July 2018
© Tsinghua University Press and Springer‐Verlag GmbH Germany, part of Springer Nature 2018
Return