AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries

Chao Lin1Longbing Qu2Jiantao Li1Zhengyang Cai1Haoyun Liu1Pan He1Xu Xu1( )Liqiang Mai1( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology, Luoshi Road 122,Wuhan,430070,China;
Department of Mechanical Engineering,The University of Melbourne,Victoria,3010,Australia;
Show Author Information

Graphical Abstract

Abstract

As a promising candidate for next generation energy storage devices, lithium sulfur (Li-S) batteries still confront rapid capacity degradation and low rate capability. Herein, we report a well-architected porous nitrogen-doped carbon/MnO coaxial nanotubes (MnO@PNC) as an efficient sulfur host material. The host shows excellent electron conductivity, sufficient ion transport channels and strong adsorption capability for the polysulfides, resulting from the abundant nitrogen-doped sites and pores as well as MnO in the carbon shell of MnO@PNC. The MnO@PNC-S composite electrode with a sulfur content of 75 wt.% deliveries a specific capacity of 802 mAh·g-1 at a high rate of 5.0 C and outstanding cycling stability with a capacity retention of 82% after 520 cycles at 1.0 C.

Electronic Supplementary Material

Download File(s)
12274_2018_2203_MOESM1_ESM.pdf (4.3 MB)

References

1

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

2

Li, Z.; Wu, H. B.; Lou, X. W. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 3061-3070.

3

Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886-12890.

4

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982-3986.

5

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

6

Chen, J. Z.; Han, K. S.; Henderson, W. A.; Lau, K. C.; Vijayakumar, M.; Dzwiniel, T.; Pan, H. L.; Curtiss, L. A.; Xiao, J.; Mueller, K. T. et al. Restricting the solubility of polysulfides in Li-S batteries via electrolyte salt selection. Adv. Energy Mater. 2016, 6, 1600160.

7

Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538-543.

8

Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571-1579.

9

Lee, J. S.; Kim, W.; Jang, J.; Manthiram, A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601943.

10

Yang, X. F.; Yan, N.; Zhou, W.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal-organic framework for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 15314-15323.

11

Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. -Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240-248.

12

Liu, X.; Huang, J. -Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

13

Li, Z.; Zhang, J. T.; Chen, Y. M.; Li, J.; Lou, X. W. Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat. Commun. 2015, 6, 8850.

14

Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539-9544.

15

Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

16

Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@ cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021-6028.

17

Guo, J. L.; Du, X. Y.; Zhang, X. L.; Zhang, F. X.; Liu, J. P. Facile formation of a solid electrolyte interface as a smart blocking layer for high-stability sulfur cathode. Adv. Mater. 2017, 29, 1700273.

18

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Wang, D. H. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 2016, 16, 864-870.

19

Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629-9636.

20

Lin, C.; Niu, C. J.; Xu, X.; Li, K.; Cai, Z. Y.; Zhang, Y. L.; Wang, X. P.; Qu, L. B.; Xu, Y. X.; Mai, L. Q. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li-S cathodes. Phys. Chem. Chem. Phys. 2016, 18, 22146-22153.

21

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

22

Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495-1503.

23

An, T. H.; Deng, D. R.; Lei, M.; Wu, Q. -H.; Tian, Z. W.; Zheng, M. S.; Dong, Q. F. MnO modified carbon nanotubes as a sulfur host with enhanced performance in Li/S batteries. J. Mater. Chem. A 2016, 4, 12858-12864.

24

Lei, T. Y.; Xie, Y. M.; Wang, X. F.; Miao, S. Y.; Xiong, J.; Yan, C. L. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries. Small 2017, 13, 1701013.

25

Zhang, J.; Shi, Y.; Ding, Y.; Zhang, W. K.; Yu, G. H. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 2016, 16, 7276-7281.

26

Guo, D. Y.; Chen, X. A.; Wei, H. F.; Liu, M. L.; Ding, F.; Yang, Z.; Yang, K. Q.; Wang, S.; Xu, X. J.; Huang, S. M. Controllable synthesis of highly uniform flower-like hierarchical carbon nanospheres and their application in high performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 6245-6256.

27

Jeong, Y. C.; Lee, K.; Kim, T.; Kim, J. H.; Park, J.; Cho, Y. S.; Yang, S. J.; Park, C. R. Partially unzipped carbon nanotubes for high-rate and stable lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 819-826.

28

Qian, X. Y.; Jin, L. N.; Zhao, D.; Yang, X. L.; Wang, S. W.; Shen, X. Q.; Rao, D. W.; Yao, S. S.; Zhou, Y. Y.; Xi, X. M. Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery. Electrochim. Acta 2016, 192, 346-356.

29

Guo, J. L.; Zhang, X. L.; Du, X. Y.; Zhang, F. X. A Mn3O4 nano-wall array based binder-free cathode for high performance lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 6447-6454.

30

Wang, C.; Su, K.; Wan, W.; Guo, H.; Zhou, H. H.; Chen, J. T.; Zhang, X. X.; Huang, Y. H. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 5018-5023.

31

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. -M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

32

Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium- sulfur battery. Adv. Funct. Mater. 2015, 25, 287-297.

33

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.

34

Ma, Z. L.; Tao, L.; Liu, D. D.; Li, Z.; Zhang, Y. Q.; Liu, Z. J.; Liu, H. W.; Chen, R.; Huo, J.; Wang, S. Y. Ultrafine nano-sulfur particles anchored on in situ exfoliated graphene for lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 9412-9417.

35

Tan, Y. B.; Zheng, Z. H.; Huang, S. T.; Wang, Y. Z.; Cui, Z. H.; Liu, J. J.; Guo, X. X. Immobilization of sulfur by constructing three-dimensional nitrogen rich carbons for long life lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 8360-8366.

36

Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 5208-5215.

37

Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for high-rate Li-S batteries. ACS Nano 2012, 6, 10759-10769.

38

Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 2016, 26, 8952-8959.

39

Wang, Q.; Wang, Z. B.; Li, C.; Gu, D. M. High sulfur content microporous carbon coated sulfur composites synthesized via in situ oxidation of metal sulfide for high-performance Li/S batteries. J. Mater. Chem. A 2017, 5, 6052-6059.

Nano Research
Pages 205-210
Cite this article:
Lin C, Qu L, Li J, et al. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Research, 2019, 12(1): 205-210. https://doi.org/10.1007/s12274-018-2203-9
Topics:

886

Views

41

Crossref

N/A

Web of Science

39

Scopus

0

CSCD

Altmetrics

Received: 11 March 2018
Revised: 14 August 2018
Accepted: 13 September 2018
Published: 28 September 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Return