AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Quantum-confined ion superfluid in nerve signal transmission

Xiqi Zhang1Lei Jiang1,2,3( )
Key Laboratory of Bio-inspired Materials and Interfacial Science,Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing,100190,China;
,University of Chinese Academy of Sciences,Beijing,100049,China;
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education,School of Chemistry, Beihang University,Beijing,100191,China;
Show Author Information

Graphical Abstract

Abstract

We propose a process of quantum-confined ion superfluid (QISF), which is enthalpy-driven confined ordered fluid, to explain the transmission of nerve signals. The ultrafast Na+ and K+ ions transportation through all sodium-potassium pump nanochannels simultaneously in the membrane is without energy loss, and leads to QISF wave along the neuronal axon, which acts as an information medium in the ultrafast nerve signal transmission. The QISF process will not only provide a new view point for a reasonable explanation of ultrafast signal transmission in the nerves and brain, but also challenge the theory of matter wave for ions, molecules and particles.

References

1

Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500-544.

2

Andersen, S. S. L.; Jackson, A. D.; Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 2009, 88, 104-113.

3

Barnett, M. W.; Larkman, P. M. The action potential. Pract. Neurol. 2007, 7, 192-197.

4

Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

5

Sansom, M. S. P.; Shrivastava, I. H.; Bright, J. N.; Tate, J.; Capener, C. E.; Biggin, P. C. Potassium channels: Structures, models, simulations. Biochim. Biophys. Acta 2002, 1565, 294-307.

6

Chen, S. Y.; Tang, Y. L.; Zhan, K.; Sun, D. H.; Hou, X. Chemiresistive nanosensors with convex/concave structures. Nano Today 2018, 20, 84-100.

7

Zhu, Y. L.; Zhan, K.; Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 2018, 12, 908-911.

8

Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 2016, 28, 7049-7064.

9

Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69-77.

10

MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem., Int. Ed. 2004, 43, 4265-4277.

11

Shi, C. W.; He, Y.; Hendriks, K.; de Groot, B. L.; Cai, X. Y.; Tian, C. L.; Lange, A.; Sun, H. A single NaK channel conformation is not enough for non-selective ion conduction. Nat. Commun. 2018, 9, 717.

12

Tadross, M. R.; Dick, I. E.; Yue, D. T. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 2008, 133, 1228-1240.

13

Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027-1032.

14

Zhang, X. Q.; Liu, H. L.; Jiang, L. Wettability and applications of nanochannels. Adv. Mater., in press, DOI: 10.1002/adma.201804508.

15

Zhao, B. S.; Meijer, G.; Schöllkopf, W. Quantum reflection of He2 several nanometers above a grating surface. Science 2011, 331, 892-894.

16

Juffmann, T.; Milic, A.; Müllneritsch, M.; Asenbaum, P.; Tsukernik, A.; Tüxen, J.; Mayor, M.; Cheshnovsky, O.; Arndt, M. Real-time single-molecule imaging of quantum interference. Nat. Nanotechnol. 2012, 7, 297-300.

17

Hackermüller, L.; Uttenthaler, S.; Hornberger, K.; Reiger, E.; Brezger, B.; Zeilinger, A.; Arndt, M. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 2003, 91, 090408.

18

Arndt, M.; Nairz, O.; Vos-Andreae, J.; Keller, C.; van der Zouw, G.; Zeilinger, A. Wave-particle duality of C60 molecules. Nature 1999, 401, 680-682.

19

Brezger, B.; Hackermüller, L.; Uttenthaler, S.; Petschinka, J.; Arndt, M.; Zeilinger, A. Matter-wave interferometer for large molecules. Phys. Rev. Lett. 2002, 88, 100404.

20

Gerlich, S.; Eibenberger, S.; Tomandl, M.; Nimmrichter, S.; Hornberger, K.; Fagan, P. J.; Tüxen, J.; Mayor, M.; Arndt, M. Quantum interference of large organic molecules. Nat. Commun. 2011, 2, 263.

21

Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. Matter-wave interference of particles selected from a molecular library with masses exceeding 10, 000 amu. Phys. Chem. Chem. Phys. 2013, 15, 14696-14700.

22

Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum dynamics and non-local effects behind ion transition states during permeation in membrane channel proteins. Entropy 2018, 20, 558.

23

Salari, V.; Moradi, N.; Sajadi, M.; Fazileh, F.; Shahbazi, F. Quantum decoherence time scales for ionic superposition states in ion channels. Phys. Rev. E 2015, 91, 032704.

24

Hille, B. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 1972, 59, 637-658.

25

Sun, Y. M.; Favre, I.; Schild, L.; Moczydlowski, E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. J. Gen. Physiol. 1997, 110, 693-715.

26

Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-fab complex at 2.0 Å resolution. Nature 2001, 414, 43-48.

27

Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 2004, 84, 1051-1095.

28

Linsdell, P.; Tabcharani, J. A.; Rommens, J. M.; Hou, Y. X.; Chang, X. B.; Tsui, L. C.; Riordan, J. R.; Hanrahan, J. W. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 1997, 110, 355-364.

Nano Research
Pages 1219-1221
Cite this article:
Zhang X, Jiang L. Quantum-confined ion superfluid in nerve signal transmission. Nano Research, 2019, 12(6): 1219-1221. https://doi.org/10.1007/s12274-019-2281-3
Topics:
Part of a topical collection:

931

Views

42

Crossref

N/A

Web of Science

41

Scopus

5

CSCD

Altmetrics

Received: 26 November 2018
Revised: 25 December 2018
Accepted: 28 December 2018
Published: 29 May 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return