Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphene nanosheets are a promising scaffold to accommodate S for achieving high performance Li/S battery. Nanosheet activation is used as a viable strategy to induce a micropore system and further improve the battery performance. Accordingly, chemical activation methods dominate despite the need of multiple stages, which slow down the process in addition to making them tiresome. Here, a three-dimensional (3D) N-doped graphene specimen was physically activated with CO2, a clean and single step process, and used for the preparation of a sulfur composite (A-3DNG/S). The A-3DNG/S composite exhibited outstanding electrochemical properties such as an excellent rate capability (1, 000 mAh·g-1 at 2C), high reversible capacity and cycling stability (average capacity ~ 800 mAh·g-1 at 1C after 200 cycles), values which exceed those measured in chemically activated graphene. Therefore, these results support the use of physical activation as a simple and efficient alternative to improve the performance of carbons as an S host for high-performance Li-S batteries.
Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287-3295.
Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.
Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751-11787.
Rosenman, A.; Markevich, E.; Salitra, G.; Aurbach, D.; Garsuch, A.; Chesneau. F. F. Review on Li-sulfur battery systems: An integral perspective. Adv. Energy Mater. 2015, 5, 1500212.
Ely, T. O.; Kamzabek, D.; Chakraborty, D.; Doherty, M. F. Lithium-sulfur batteries: State of the art and future directions. ACS Appl. Energy Mater. 2018, 1, 1783-1814.
Su, D. W.; Zhou, D.; Wang, C. Y.; Wang, G. X. Toward high performance lithium-sulfur batteries based on Li2S cathodes and beyond: Status, challenges, and perspectives. Adv. Funct. Mater. 2018, 28, 1800154.
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. , Int. Ed. 2011, 50, 5904-5908.
Tao, X. Y.; Chen, X. R.; Xia, Y.; Huang, H.; Gan, Y. P.; Wu, R.; Chen, F.; Zhang, W. K. Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 3295-3301.
Hernández-Rentero, C.; Córdoba, R.; Moreno, N.; Caballero, A.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Res. 2018, 11, 89-100.
Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life. Nano Energy 2015, 16, 268-280.
Moreno, N.; Caballero, A.; Hernán, L.; Morales, J.; Canales-Vázquez, J. Ordered mesoporous carbons obtained by a simple soft template method as sulfur immobilizers for lithium-sulfur cells. Phys. Chem. Chem. Phys. 2014, 16, 17332-17340.
Ahn, W.; Kim, K. B.; Jung, K. N.; Shin, K. H.; Jin, C. S. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries. J. Power Sources 2012, 202, 394-399.
Ye, X. M.; Ma, J.; Hu, Y. S.; Wei, H. Y.; Ye, F. F. MWCNT porous microspheres with an efficient 3D conductive network for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 775-780.
Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522-18525.
Moon, J.; Park, J.; Jeon, C.; Lee, J.; Jo, I.; Yu, S. H.; Cho, S. P.; Sung, Y. E.; Hong, B. H. An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale 2015, 7, 13249-13255.
Kim, H.; Lim, H. D.; Kim, J.; Kang, K. Graphene for advanced Li/S and Li/air batteries. J. Mater. Chem. A 2014, 2, 33-47.
Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2014, 14, 271-279.
Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 10920-10930.
Wei, M.; Yuan, P. L.; Chen, W. H.; Hu, J. H.; Mao, J.; Shao, G. S. Facile assembly of partly graphene-enveloped sulfur composites in double-solvent for lithium-sulfur batteries. Electrochim. Acta 2015, 178, 564-570.
Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/ niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.
Xia, J. L.; Chen, F.; Li, J. H.; Tao, N. J. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505-509.
Dai, S. G.; Liu, Z.; Zhao, B. T.; Zeng, J. H.; Hu, H.; Zhang, Q. B.; Chen, D. C.; Qu, C.; Dang, D.; Liu, M. L. A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources 2018, 387, 43-48.
Wang, H.; Yuan, X. Z.; Zeng, G. M.; Wu, Y.; Liu, Y.; Jiang, Q.; Gu, S. S. Three dimensional graphene based materials: Synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Adv. Colloid Interface Sci. 2015, 221, 41-59.
Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356-365.
Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res. 2016, 9, 240-248.
Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/ polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.
Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936-5942.
Xie, Y.; Meng, Z.; Cai, T. W.; Han, W. Q. Effect of boron-doping on the graphene aerogel used as cathode for the lithium-sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 25202-25210.
Zegeye, T. A.; Tsai, M. C.; Cheng, J. H.; Lin, M. H.; Chen, H. M.; Rick, J.; Su, W. N.; Kuo, C. F. J.; Hwang, B. J. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. J. Power Sources 2017, 353, 298-311.
Sui, Z. Y.; Yang, Q. S.; Zhou, H. Y.; Li, X.; Sun, Y. N.; Xiao, P. W.; Wei, Z. X.; Han, B. H. Nitrogen-doped graphene aerogel as both a sulfur host and an effective interlayer for high-performance lithium-sulfur batteries. Nanotechnology 2017, 28, 495701.
Yu, M. P.; Ma, J. S.; Xie, M.; Song, H. Q.; Tian, F. Y.; Xu, S. S.; Zhou, Y.; Li, B.; Wu, D.; Qiu H. et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602347.
Li, L.; Zhou, G. M.; Yin, L. C.; Koratkar, N.; Li, F.; Cheng, H. M. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries. Carbon 2016, 108, 120-126.
Zhang, F. F.; Wang, C. L.; Huang, G.; Yin, D. M.; Wang, L. M. Enhanced electrochemical performance by a three-dimensional interconnected porous nitrogen-doped graphene/carbonized polypyrrole composite for lithium-sulfur batteries. RSC Adv. 2016, 6, 26264-26270.
Ding, K.; Bu, Y. K.; Liu, Q.; Li, T. F.; Meng, K.; Wang, Y. B. Ternary-layered nitrogen-doped graphene/sulfur/polyaniline nanoarchitecture for the high-performance of lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 8022-8027.
Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/ sulfur batteries enabled by nitrogen-doped grapheme. Nano Lett. 2014, 14, 4821-4827.
Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 2014, 5, 5002.
Wang, X. W.; Zhang, Z. A.; Qu, Y. H.; Lai, Y. Q.; Li, J. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries. J. Power Sources 2014, 256, 361-368.
Wang, C.; Su, K.; Wan, W.; Guo, H.; Zhou, H. H.; Chen, J. T.; Zhang, X. X.; Huang, Y. H. High sulfur loading composite wrapped by 3D nitrogen-doped graphene as a cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 5018-5023.
Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.
Kou, T. Y.; Yao, B.; Liu, T. Y.; Li, Y. Recent advances in chemical methods for activating carbon and metal oxide based electrodes for supercapacitors. J. Mater. Chem. A 2017, 5, 17151-17173.
Ahmadpour, A.; Do, D. D. The preparation of active carbons from coal by chemical and physical activation. Carbon 1996, 34, 471-479.
Yang, X.; Zhang, L.; Zhang, F.; Huang, Y.; Chen, Y. S. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 5208-5215.
Chen, X. A.; Xiao, Z. B.; Ning, X. T.; Liu, Z.; Yang, Z.; Zou, C.; Wang, S.; Chen, X. H.; Chen, Y.; Huang, S. M. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2014, 4, 1301988.
You, Y.; Zeng, W. C.; Yin, Y. X.; Zhang, J.; Yang, C. P.; Zhu, Y. W.; Guo, Y. G. Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li-S batteries. J. Mater. Chem. A 2015, 3, 4799-4802.
Xu, J.; Su, D. W.; Zhang, W. X.; Bao, W. Z.; Wang, G. X. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 17381-17393.
Ding, B.; Yuan, C. Z.; Shen, L. F.; Xu, G. Y.; Nie, P.; Lai, Q. X.; Zhang, X. G. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2013, 1, 1096-1101.
Shan, J. Q.; Liu, Y. X.; Su, Y. Z.; Liu, P.; Zhuang, X. D.; Wu, D. Q.; Zhang, F.; Feng, X. L. Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium-sulfur battery cathode. J. Mater. Chem. A 2016, 4, 314-320.
Liu, S. Z.; Peng, W. C.; Sun, H. Q.; Wang, S. B. Physical and chemical activation of reduced graphene oxide for enhanced adsorption and catalytic oxidation. Nanoscale 2014, 6, 766-771.
Benítez, A.; Di Lecce, D.; Elia, G. A.; Caballero, Á.; Morales, J.; Hassoun, J. A lithium-ion battery using a 3D-array nanostructured graphene-sulfur cathode and a silicon oxide-based anode. ChemSusChem 2018, 11, 1512-1520.
Al-Hazmi, F. S.; Al-Harbi, G. H.; Beall, G. W.; Al-Ghamdi, A. A.; Obaid, A. Y.; Mahmoud, W. E. One pot synthesis of graphene based on microwave assisted solvothermal technique. Synth. Met. 2015, 200, 54-57.
Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett. 2014, 15, 798-802.
Nguyen, C.; Do, D. D. The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 2001, 39, 1327-1336.
Vargas, O. A.; Caballero, Á.; Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? Nanoscale 2012, 4, 2083-2092.
Jorio, A.; Martins-Ferreira, E. H.; Moutinho, M. V. O.; Stavale, F.; Achete, C. A.; Capaz, R. B. Measuring disorder in graphene with the G and D bands. Phys. Status Solid B 2010, 247, 2980-2982.
Benítez, A.; Di Lecce, D.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E.; Hassoun, J. Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. J. Power Sources 2018, 397, 102-112.
Abouimrane, A.; Compton, O. C.; Amine, K.; Nguyen, S. T. Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J. Phys. Chem. C 2010, 114, 12800-12804.
Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009-17019.
Jiang, Y.; Wei, M.; Feng, J. K.; Ma, Y. C.; Xiong, S. L. Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ. Sci. 2016, 9, 1430-1438.
Song, M. K.; Cairns, E. J.; Zhang, Y. G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale 2013, 5, 2186-2204.
Wu, F.; Li, J.; Tian, Y. F.; Su, Y. F.; Wang, J.; Yang, W.; Li, N.; Chen, S.; Bao, L. Y. 3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Sci. Rep. 2015, 5, 13340.
Di Lecce, D.; Hassoun, J. Lithium transport properties in LiMn1-αFeαPO4 olivine cathodes. J. Phys. Chem. C 2015, 119, 20855-20863.
Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250-5256.
Carbone, L.; Coneglian, T.; Gobet, M.; Munoz, S.; Devany, M.; Greenbaum, S.; Hassoun, J. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. J. Power Sources 2018, 377, 26-35.
Chen, F.; Ma, L. L.; Ren, J. G.; Luo, X. Y.; Liu, B. B.; Zhou, X. Y. Sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon coated separator for high performance lithium-sulfur batteries. Nanomaterials 2018, 8, 191.