AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries

Wen Luo1,§Feng Li2,§Weiran Zhang3Kang Han4Jean-Jacques Gaumet5Hans-Eckhardt Schaefer4,6Liqiang Mai4( )
Department of Physics,School of Science, Wuhan University of Technology,Wuhan,430070,China;
Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei,230000,China;
Division of Materials Science and Engineering,Boston University,MA,02215,USA;
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,International School of Materials Science and Technology, Wuhan University of Technology,Wuhan,430070,China;
Laboratoire de Chimie et Physique: Approche Multi-échelles des Milieux Complexes,Institut Jean Barriol, Université de Lorraine,Metz,57070,France;
Institute for Functional Matter and Quantum Technologies,Stuttgart University, Pfaffenwaldring 57,Stuttgart,70569,Germany;

§ Wen Luo and Feng Li contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of potassium. To develop advanced electrode materials for accommodating the large size and high activity of potassium ion is of great interests. Herein, a segment-like antimony (Sb) nanorod encapsulated in hollow carbon tube electrode material (Sb@HCT) was prepared. Beneficial from the virtue of abundant nitrogen doping in carbon tube, one-dimensional and hollow structure advantages, Sb@HCT exhibits excellent potassium storage properties: in the case of potassium bis(fluorosulfonyl)imide (KFSI) electrolyte, Sb@HCT displays a reversible capacity of up to 453.4 mAh·g-1 at a current density of 0.5 A·g-1 and good rate performance (a capacity of 211.5 mAh·g-1 could be achieved at an ultrahigh rate of 5 A·g-1). Additionally, Sb@HCT demonstrates excellent long-cycle stability at a current density of 2 A·g-1 over 120 cycles. Meanwhile, electrolyte optimization is an effective strategy for greatly improving electrochemical performance. Through ex-situ characterizations, we disclosed the potassiation of Sb anode is quite reversible and undergoes multistep processes, combining solid solution reaction and two-phase reaction.

Electronic Supplementary Material

Download File(s)
12274_2019_2335_MOESM1_ESM.pdf (2.1 MB)

References

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Mai, L. Q.; Yan, M. Y.; Zhao, Y. L. Track batteries degrading in real time. Nature 2017, 546, 469-470.

3

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587-603.

4

Zhou, H. J.; Zhao, H. B.; Zhang, X.; Cheng, H. W.; Lu, X. G.; Xu, Q. Facile one-step synthesis of Cu2O@Cu sub-microspheres composites as anode materials for lithium ion batteries. J. Mater. Sci. Technol. 2018, 34, 1085-1090.

5

Wu, G.; More, K. L.; Xu, P.; Wang, H. L.; Ferrandon, M.; Kropf, A. J.; Myers, D. J.; Ma, S. G.; Johnston, C. M.; Zelenay, P. A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chem. Commun. 2013, 49, 3291-3293.

6

Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nature Commun. 2015, 6, 6420.

7

Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

8

Luo, W.; Calas, A.; Tang, C. J.; Li, F.; Zhou, L.; Mai, L. Q. Ultralong Sb2Se3 nanowire-based free-standing membrane anode for lithium/sodium ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 35219-35226.

9

He, Y. Z.; Han, X. J.; Du, Y. C.; Song, B.; Zhang, B.; Zhang, W.; Xu, P. Conjugated polymer-mediated synthesis of sulfur-and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano Res. 2018, 11, 2573-2585.

10

Lakshmi, V.; Chen, Y.; Mikhaylov, A. A.; Medvedev, A. G.; Sultana, I.; Rahman, M. M.; Lev, O.; Prikhodchenko, P. V.; Glushenkov, A. M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272-8275.

11

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.

12

Wang, X. P.; Xu, X. M.; Niu, C. J.; Meng, J. S.; Huang, M.; Liu, X.; Liu, Z.; Mai, L. Q. Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries. Nano Lett. 2017, 17, 544-550.

13

Zhang, W. C.; Mao, J. F.; Li, S. A.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316-3319.

14

McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Interfaces 2015, 7, 26158-26166.

15

Han, C. H.; Han, K.; Wang, X. P.; Wang, C. Y.; Li, Q.; Meng, J. S.; Xu, X. M.; He, Q.; Luo, W.; Wu, L. M. et al. Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries. Nanoscale 2018, 10, 6820-6826.

16

Xie, Y. H.; Chen, Y.; Liu, L.; Tao, P.; Fan, M. P.; Xu, N.; Shen, X. W.; Yan, C. L. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 2017, 29, 1702268.

17

Naguib, M.; Adams, R. A.; Zhao, Y. P.; Zemlyanov, D.; Varma, A.; Nanda, J.; Pol, V. G. Electrochemical performance of MXenes as K-ion battery anodes. Chem. Commun. 2017, 53, 6883-6886.

18

Wang, X. P.; Han, K.; Wang, C. Y.; Liu, Z. A; Xu, X. M.; Huang, M.; Hu, P.; Meng, J. S.; Li, Q.; Mai, L. Q. Graphene oxide-wrapped dipotassium terephthalate hollow microrods for enhanced potassium storage. Chem. Commun. 2018, 54, 11029-11032.

19

Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.

20

Xue, L. G.; Li, Y. T.; Gao, H. C.; Zhou, W. D.; Lü, X. J.; Kaveevivitchai, W.; Manthiram, A.; Goodenough, J. B. Low-cost high-energy potassium cathode. J. Am. Chem. Soc. 2017, 139, 2164-2167.

21

Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

22

Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 2017, 164, A54-A60.

23

Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279-9282.

24

Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem. , Int. Ed. 2018, 130, 4777-4781.

25

Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

26

Zhao, J.; Zou, X. X.; Zhu, Y. J.; Xu, Y. H.; Wang, C. S. Electrochemical intercalation of potassium into graphite. Adv. Funct. Mater. 2016, 26, 8103-8110.

27

Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671-7677.

28

Gao, Y.; Yi, R.; Li, Y. C.; Song, J. X.; Chen, S. R.; Huang, Q. Q.; Mallouk, T. E.; Wang, D. H. General method of manipulating formation, composition, and morphology of solid-electrolyte interphases for stable Li-alloy anodes. J. Am. Chem. Soc. 2017, 139, 17359-17367.

29

Lei, K. X.; Li, F. J.; Mu, C. N.; Wang, J. B.; Zhao, Q.; Chen, C. C.; Chen, J. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes. Energy Environ. Sci. 2017, 10, 552-557.

30

Madec, L.; Gabaudan, V.; Gachot, G.; Stievano, L.; Monconduit, L.; Martinez, H. Paving the way for K-ion batteries: Role of electrolyte reactivity through the example of Sb-based electrodes. ACS Appl. Mater. Interfaces 2018, 10, 34116-34122.

31

Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174-185.

32

Fan, L.; Chen, S. H.; Ma, R. F.; Wang, J.; Wang, L. L.; Zhang, Q. F.; Zhang, E. J.; Liu, Z. M.; Lu, B. G. Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 2018, 14, 1801806.

33

Luo, W.; Li, F.; Gaumet, J. J.; Magri, P.; Diliberto, S.; Zhou, L.; Mai, L. Q. Bottom-up confined synthesis of nanorod-in-nanotube structured Sb@N-C for durable lithium and sodium storage. Adv. Energy Mater. 2018, 8, 1703237.

34

Xiong, X. H.; Wang, G. H.; Lin, Y. W.; Wang, Y.; Ou, X.; Zheng, F. H.; Yang, C. H.; Wang, J. H.; Liu, M. L. Enhancing sodium ion battery performance by strongly binding nanostructured Sb2S3 on sulfur-doped graphene sheets. ACS Nano 2016, 10, 10953-10959.

35

Luo, W.; Zhang, P. F.; Wang, X. P.; Li, Q. D.; Dong, Y. F.; Hua, J. C.; Zhou, L.; Mai, L. Q. Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode. J. Power Sources 2016, 304, 340-345.

36

McGuire, K.; Lowhorn, N. D.; Tritt, T. M.; Rao, A. M. Raman scattering in doped transition metal pentatellurides. J. Appl. Phys. 2002, 92, 2524-2527.

37

Wang, S.; Yuan, S.; Yin, Y. B.; Zhu, Y. H.; Zhang, X. B.; Yan, J. M. Green and facile fabrication of MWNTs@Sb2S3@PPy coaxial nanocables for high-performance Na-ion batteries. Part. Part. Syst. Char. 2016, 33, 493-499.

38

Fu, L. J.; Tang, K.; Song, K. P.; van Aken, P. A.; Yu, Y.; Maier, J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 2014, 6, 1384-1389.

39

Shen, W.; Wang, C.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Adv. Energy Mater. 2015, 5, 1400982.

40

Darwiche, A.; Marino, C.; Sougrati, M. T.; Fraisse, B.; Stievano, L.; Monconduit, L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism. J. Am. Chem. Soc. 2012, 134, 20805-20811.

41

He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk. Nano Lett. 2014, 14, 1255-1262.

42

Su, D. W.; Dou, S. X.; Wang, G. X. Bismuth: A new anode for the Na-ion battery. Nano Energy 2015, 12, 88-95.

43

Yi, Z.; Lin, N.; Zhang, W. Q.; Wang, W. W.; Zhu, Y. C.; Qian, Y. T. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018, 10, 13236-13241.

44

Tzolov, M. B.; Iliev, M. N. Raman scattering from monoalkali (Na-Sb and K-Sb), bialkali (Na-K-Sb) and multialkali (Na-K-Sb-Cs) photocathodes. Thin Solid Films 1992, 213, 99-102.

Nano Research
Pages 1025-1031
Cite this article:
Luo W, Li F, Zhang W, et al. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Research, 2019, 12(5): 1025-1031. https://doi.org/10.1007/s12274-019-2335-6
Topics:

820

Views

95

Crossref

N/A

Web of Science

90

Scopus

21

CSCD

Altmetrics

Received: 12 December 2018
Revised: 24 January 2019
Accepted: 10 February 2019
Published: 23 March 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return