AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spectroscopic signatures of edge states in hexagonal boron nitride

Chuang Gao1,§Lei Tao1,2,3,§Yu-Yang Zhang1,4( )Shixuan Du1,2,4Sokrates T. Pantelides1,3Juan Carlos Idrobo5Wu Zhou1,4( )Hong-Jun Gao1,2
School of Physical Sciences and CAS Key Laboratory of Vacuum Physics,University of Chinese Academy of Sciences,Beijing,100049,China;
Institute of Physics,Chinese Academy of Sciences,Beijing,100190,China;
Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science,Vanderbilt University,Nashville, TN,37235,USA;
CAS Centre for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing,100049,China;
Center for Nanophase Materials Sciences,Oak Ridge National Laboratory,Oak Ridge, TN,37831,USA;

§ Chuang Gao and Lei Tao contributed equally to this work

Show Author Information

Graphical Abstract

Abstract

We use Z-contrast imaging and atomically resolved electron energy-loss spectroscopy on an aberration-corrected scanning transmission electron microscope to investigate the local electronic states of boron atoms at different edge structures in monolayer and bilayer hexagonal boron nitride (h-BN). We find that edges with bonding unsaturated sp2 boron atoms have a unique spectroscopic signature with a prominent pre-peak at ~ 190.2 eV in the B K-edge fine structure. First-principles calculations reveal that the observed pre-peak arises from excitations to the in-plane lowest-energy empty sp2 boron dangling bonds at the B-terminated edge. This spectroscopic signature can serve as a fingerprint to explore new edge structures in h-BN.

Electronic Supplementary Material

Download File(s)
12274_2019_2417_MOESM1_ESM.pdf (2 MB)

References

1

Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

2

Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 2009, 80, 155425.

3

Gibb, A. L.; Alem, N.; Chen, J. H.; Erickson, K. J.; Ciston, J.; Gautam, A.; Linck, M.; Zettl, A. Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 2013, 135, 6758–6761.

4

Liu, Y. Y.; Zou, X. L.; Yakobson, B. I. Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 2012, 6, 7053–7058.

5

Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

6

Wang, Q. X.; Zhang, Q.; Zhao, X. X.; Luo, X.; Wong, C. P. Y.; Wang, J. Y.; Wan, D.; Venkatesan, T.; Pennycook, S. J.; Loh, K. P. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 2018, 18, 6898–6905.

7

Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.

8

Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804–5810.

9

Qi, Y.; Zhang, Z. P.; Deng, B.; Zhou, X. B.; Li, Q. C.; Hong, M.; Li, Y. C.; Liu, Z. F.; Zhang, Y. F. Irreparable defects produced by the patching of h-BN frontiers on strongly interacting Re(0001) and their electronic properties. J. Am. Chem. Soc. 2017, 139, 5849–5856.

10

Grad, G. B.; Blaha, P.; Schwarz, K.; Auwärter, W.; Greber, T. Density functional theory investigation of the geometric and spintronic structure of h-BN/Ni(111) in view of photoemission and STM experiments. Phys. Rev. B 2003, 68, 085404.

11

Suenaga, K.; Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 2010, 468, 1088–1090.

12

Suenaga, K.; Tencé, M.; Mory, C.; Colliex, C.; Kato, H.; Okazaki, T.; Shinohara, H.; Hirahara, K.; Bandow, S.; Iijima, S. Element-selective single atom imaging. Science 2000, 290, 2280–2282.

13

Zhou, W.; Kapetanakis, M. D.; Prange, M. P.; Pantelides, S. T.; Pennycook, S. J.; Idrobo, J. C. Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 2012, 109, 206803.

14

Suenaga, K.; Sato, Y.; Liu, Z.; Kataura, H.; Okazaki, T.; Kimoto, K.; Sawada, H.; Sasaki, T.; Omoto, K.; Tomita, T. et al. Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 2009, 1, 415–418.

15

Senga, R.; Komsa, H. P.; Liu, Z.; Hirose-Takai, K.; Krasheninnikov, A. V.; Suenaga, K. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes. Nat. Mater. 2014, 13, 1050–1054.

16

Tan, H. Y.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys. Rev. Lett. 2011, 107, 107602.

17

Kimoto, K.; Asaka, T.; Nagai, T.; Saito, M.; Matsui, Y.; Ishizuka, K. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 2007, 450, 702–704.

18

Ramasse, Q. M.; Seabourne, C. R.; Kepaptsoglou, D. M.; Zan, R.; Bangert, U.; Scott, A. J. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 2013, 13, 4989–4995.

19

Lin, Y. C.; Teng, P. Y.; Chiu, P. W.; Suenaga, K. Exploring the single atom spin state by electron spectroscopy. Phys. Rev. Lett. 2015, 115, 206803.

20

Warner, J. H.; Lin, Y. C.; He, K.; Koshino, M.; Suenaga, K. Atomic level spatial variations of energy states along graphene edges. Nano Lett. 2014, 14, 6155–6159.

21

Suenaga, K.; Kobayashi, H.; Koshino, M. Core-level spectroscopy of point defects in single layer h-BN. Phys. Rev. Lett. 2012, 108, 075501.

22

Alem, N.; Ramasse, Q. M.; Seabourne, C. R.; Yazyev, O. V.; Erickson, K.; Sarahan, M. C.; Kisielowski, C.; Scott, A. J.; Louie, S. G.; Zettl, A. Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride. Phys. Rev. Lett. 2012, 109, 205502.

23

Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

24

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

25

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

26

Buczko, R.; Duscher, G.; Pennycook, S. J.; Pantelides, S. T. Excitonic effects in core-excitation spectra of semiconductors. Phys. Rev. Lett. 2000, 85, 2168–2171.

27

Duscher, G.; Buczko, R.; Pennycook, S. J.; Pantelides, S. T. Core-hole effects on energy-loss near-edge structure. Ultramicroscopy 2001, 86, 355–362.

28

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

Nano Research
Pages 1663-1667
Cite this article:
Gao C, Tao L, Zhang Y-Y, et al. Spectroscopic signatures of edge states in hexagonal boron nitride. Nano Research, 2019, 12(7): 1663-1667. https://doi.org/10.1007/s12274-019-2417-5
Topics:

801

Views

10

Crossref

N/A

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 06 March 2019
Revised: 03 April 2019
Accepted: 12 April 2019
Published: 25 April 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return