We use Z-contrast imaging and atomically resolved electron energy-loss spectroscopy on an aberration-corrected scanning transmission electron microscope to investigate the local electronic states of boron atoms at different edge structures in monolayer and bilayer hexagonal boron nitride (h-BN). We find that edges with bonding unsaturated sp2 boron atoms have a unique spectroscopic signature with a prominent pre-peak at ~ 190.2 eV in the B K-edge fine structure. First-principles calculations reveal that the observed pre-peak arises from excitations to the in-plane lowest-energy empty sp2 boron dangling bonds at the B-terminated edge. This spectroscopic signature can serve as a fingerprint to explore new edge structures in h-BN.
Publications
- Article type
- Year
- Co-author
Article type
Year
Research Article
Issue
Nano Research 2019, 12(7): 1663-1667
Published: 25 April 2019
Downloads:25
Total 1