Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Introducing defects into graphene has been widely utilized to realize the negative magnetoresistance (MR) effect in graphene. However, the reported graphene negative MR exhibits only ~ 10% under 10 T at room temperature to date, which extremely limits the resolution of future spintronics devices. Moreover, intentional defect introduction can also cause unintentional degradation in graphene's intrinsic properties. In this paper, we report a magnetic logic inverter based on a crossed structure of defect-free graphene, resulting in a substantial gain of 4.81 mV/T while exhibiting room temperature operation. This crossed structure of graphene shows large unsaturated room temperature negative MR with an enhancement of up to 1, 000% at 9 T. A transition behavior between negative and positive MR is observed in this crossed structure and the transition temperature can be tuned by a ratio of the conductivity between in-plane and out-of-plane transport. Our results open an intriguing path for future two-dimensional spintronics device applications.
Fernández-Rossier, J.; Tejedor, C. Spin degree of freedom in two dimensional exciton condensates. Phys. Rev. Lett. 1997, 78, 4809-4812.
Drew, A. J.; Hoppler, J.; Schulz, L.; Pratt, F. L.; Desai, P.; Shakya, P.; Kreouzis, T.; Gillin, W. P.; Suter, A.; Morley, N. A. et al. Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation. Nat. Mater. 2009, 8, 109-114.
Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spinbased electronics vision for the future. Science 2001, 294, 1488-1495.
Sakai, S.; Majumdar, S.; Popov, Z. I.; Avramov, P. V.; Entani, S.; Hasegawa, Y.; Yamada, Y.; Huhtinen, H.; Naramoto, H.; Sorokin, P. B. et al. Proximityinduced spin polarization of graphene in contact with half-metallic manganite. ACS Nano 2016, 10, 7532-7541.
Avsar, A.; Tan, J. Y.; Kurpas, M.; Gmitra, M.; Watanabe, K.; Taniguchi, T.; Fabian, J.; Özyilmaz, B. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes. Nat. Phys. 2017, 13, 888-893.
Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 1988, 61, 2472-2475.
Moodera, J. S.; Kinder, L. R.; Wong, T. M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273-3276.
Zhang, Y.; Yuan, H. Y.; Wang, X. S.; Wang, X. R. Breaking the current density threshold in spin-orbit-torque magnetic random access memory. Phys. Rev. B 2018, 97, 144416.
Sato, N.; Xue, F.; White, R. M.; Bi, C.; Wang, S. X. Two-terminal spin-orbit torque magnetoresistive random access memory. Nat. Electron. 2018, 1, 508-511.
Kim, S. N.; Choi, J. W.; Lim, S. H. Tailoring of magnetic properties of giant magnetoresistance spin valves via insertion of ultrathin non-magnetic spacers between pinned and pinning layers. Sci. Rep. 2019, 9, 1617.
Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4550.
Guo, Y. Q.; Dai, J.; Zhao, J. Y.; Wu, C. Z.; Li, D. Q.; Zhang, L. D.; Ning, W.; Tian, M. L.; Zeng, X. C.; Xie, Y. Large negative magnetoresistance induced by anionic solid solutions in two-dimensional spin-frustrated transition metal chalcogenides. Phys. Rev. Lett. 2014, 113, 157202.
Jiang, P. H.; Li, L.; Liao, Z. L.; Zhao, Y. X.; Zhong, Z. C. Spin direction-controlled electronic band structure in two-dimensional ferromagnetic CrI3. Nano Lett. 2018, 18, 3844-3849.
Zhang, W.; Wong, P. K. J.; Zhou, X. C.; Rath, A.; Huang, Z. C.; Wang, H. Y.; Morton, S. A.; Yuan, J. R.; Zhang, L.; Chua, R. et al. Ferromagnet/two-dimensional semiconducting transition-metal dichalcogenide interface with perpendicular magnetic anisotropy. ACS Nano 2019, 13, 2253-2261.
Mouafo, L. D. N.; Godel, F.; Melinte, G.; Hajjar-Garreau, S.; Majjad, H.; Dlubak, B.; Ersen, O.; Doudin, B.; Simon, L.; Seneor, P. et al. Anisotropic magneto-coulomb properties of 2D-0D heterostructure single electron device. Adv. Mater. 2018, 30, 1802478.
Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and berry's phase in graphene. Nature 2005, 438, 201-204.
Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491-495.
Vasileva, G.; Alekseev, P.; Vasilyev, Y.; Dmitriev, A.; Kachorovskii, V.; Smirnov, D.; Schmidt, H.; Haug, R. Magnetoresistance of monolayer graphene with short-range disorder. Phys. Status Solidi B 2019, 256, 1800525.
Wu, H. C.; Chaika, A. N.; Hsu, M. C.; Huang, T. W.; Abid, M.; Abid, M.; Aristov, V. Y.; Molodtsova, O. V.; Babenkov, S. V.; Niu, Y. et al. Large positive in-plane magnetoresistance induced by localized states at nanodomain boundaries in graphene. Nat. Commun. 2017, 8, 14453.
Rein, M.; Richter, N.; Parvez, K.; Feng, X. L.; Sachdev, H.; Kläui, M.; Müllen, K. Magnetoresistance and charge transport in graphene governed by nitrogen dopants. ACS Nano 2015, 9, 1360-1366.
Hong, X.; Cheng, S. H.; Herding, C.; Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B 2011, 83, 085410.
Liu, Y. P.; Liu, X.; Zhang, Y. J.; Xia, Q. L.; He, J. Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology 2017, 28, 235303.
Chen, J. J.; Wu, H. C.; Yu, D. P.; Liao, Z. M. Magnetic moments in graphene with vacancies. Nanoscale 2014, 6, 8814-8821.
Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361-394.
Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.
Mohiuddin, T. M. G.; Hill, E.; Elias, D.; Zhukov, A.; Novoselov, K.; Geim, A. Graphene in multilayered CPP spin valves. IEEE Trans. Magn. 2008, 44, 2624-2627.
Lu, J. M.; Zhang, H. J.; Shi, W.; Wang, Z.; Zheng, Y.; Zhang, T.; Wang, N.; Tang, Z. K.; Sheng, P. Graphene magnetoresistance device in van der Pauw geometry. Nano Lett. 2011, 11, 2973-2977.
Heo, J.; Chung, H. J.; Lee, S. H.; Yang, H.; Seo, D. H.; Shin, J. K.; Chung, U. I.; Seo, S.; Hwang, E. H.; Sarma, S. D. Nonmonotonic temperature dependent transport in graphene grown by chemical vapor deposition. Phys. Rev. B 2011, 84, 035421.
Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.
Sagar, R. U. R.; Galluzzi, M.; Wan, C. H.; Shehzad, K.; Navale, S. T.; Anwar, T.; Mane, R. S.; Piao, H. G.; Ali, A.; Stadler, F. J. Large, linear, and tunable positive magnetoresistance of mechanically stable graphene foam-toward high-performance magnetic field sensors. ACS Appl. Mater. Interfaces 2017, 9, 1891-1898.
Gopinadhan, K.; Shin, Y. J.; Jalil, R.; Venkatesan, T.; Geim, A. K.; Neto, A. H. C.; Yang, H. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures. Nat. Commun. 2015, 6: 8337.
El Moutaouakil, A.; Kang, H. C.; Handa, H.; Fukidome, H.; Suemitsu, T.; Sano, E.; Suemitsu, M.; Otsuji, T. Room temperature logic inverter on epitaxial graphene-on-silicon device. Jpn. J. Appl. Phys. 2011, 50, 070113.