Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A monolayer of Sr2Nb3O10 (SNO) is deposited on the Pt/Ti/SiO2/Si (Pt-Si) or Pt/Ti/polyimide (Pt-PI) substrate by using the Langmuir-Blodgett method and employed as a seed-layer for the growth of a crystalline (Na1-xKx)NbO3 (NKN) film at 350 ℃. The crystalline NKN film is grown along the [001] direction on the SNO/Pt-Si (or SNO/Pt-PI) substrate. Due to the presence of oxygen vacancies in the SNO seed-layer, the NKN film exhibits low ferroelectric properties and large leakage current. To ameliorate these properties, the SNO/Pt-Si substrate is annealed in a 50 Torr oxygen atmosphere at 300 ℃, which removes the oxygen vacancies. Consequently, the NKN film deposited on this substrate exhibits promising electrical properties, namely a dielectric constant of 278, dissipation factor of 1.7%, a piezoelectric constant of 175 pm·V-1, and a leakage current density of 6.47 × 10-7 A·cm-2 at -0.2 MV·cm-1. Similar electrical properties are obtained from the NKN film grown on the flexible SNO/Pt-PI substrate at 350 ℃. Hence, the NKN films grown on the SNO seed-layer at 350 ℃ can be applied to electronic devices with flexible polymer substrates.
Xu, K.; Li, J.; Lv, X.; Wu, J. G; Zhang, X. X.; Xiao, D. Q.; Zhu, J. G. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 2016, 28, 8519-8523.
Wu, B.; Wu, H. J.; Wu, J. G.; Xiao, D. Q.; Zhu, J. G.; Pennycook, S. J. Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 2016, 138, 15459–15464.
Liu, D. K.; Zhang, X. C.; Su, W. B.; Wang, X. M.; Yao, W. Z.; Zhou, C. M.; Zhang, J. L. Outstanding piezoelectric properties, phase transitions and domain configurations of 0.963(K0.48Na0.52)(Nb0.955Sb0.045)O3– 0.037(Bi0.50Na0.50)HfO3 ceramics. J. Alloys Compd. 2019, 779, 800-804.
Yao, W. Z.; Zhang, J. L.; Wang, X. M.; Zhou, C. M.; Sun, X.; Zhan, J. High piezoelectric performance and domain configurations of (K0.45Na0.55)0.98Li0.02Nb0.76Ta0.18Sb0.06O3 lead-free ceramics prepared by two-step sintering. J. Eur. Ceram. Soc. 2019, 39, 287-294.
Lv, X.; Wu, J. G.; Zhao, C. L.; Xiao, D. Q.; Zhu, J. G.; Zhang, Z. H.; Zhang, C. H.; Zhang, X. X. Enhancing temperature stability in potassium-sodium niobate ceramics through phase boundary and composition design. J. Eur. Ceram. Soc. 2019, 39, 305-315.
Zheng, T.; Wu, J. G.; Xiao, D. Q.; Zhu, J. G. Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 2018, 98, 552–624.
Qin, Y. L.; Zhang, J. L.; Yao, W. Z.; Lu, C. J.; Zhang, S. J. Domain configuration and thermal stability of (K0.48Na0.52)(Nb0.96Sb0.04)O3 -Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl. Mater. Interfaces 2016, 8, 7257-7265.
Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87.
Wang, X. P.; Wu, J. G.; Xiao, D. Q.; Zhu, J. G.; Cheng, X. J.; Zheng, T.; Zhang, B. Y.; Lou, X. J.; Wang, X. J. Giant piezoelectricity in potassium- sodium niobate lead-free ceramics. J. Am. Chem. Soc. 2014, 136, 2905–2910.
Wang, X. P.; Wu, J. G.; Xiao, D. Q.; Cheng, X. J.; Zheng, T.; Zhang, B. Y.; Lou, X. J.; Zhu, J. G. Large d33 in (K, Na)(Nb, Ta, Sb)O3–(Bi, Na, K)ZrO3 lead-free ceramics. J. Mater. Chem. A 2014, 2, 4122–4126.
Wang, X. P.; Wu, J. G.; Xiao, D. Q.; Cheng, X. J.; Zheng, T.; Lou, X. J.; Zhang, B. Y.; Zhu, J. G. New potassium–sodium niobate ceramics with a giant d33. ACS Appl. Mater. Interfaces 2014, 6, 6177-6180.
Akmal, M. H. M. Warikh, A. R. M.; Azlan, U. A. A.; Azmi, N. A.; Salleh, M. S.; Kasim, M. S. Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique. Ceram. Int. 2018, 44, 317-325.
Li, C.; Wang, L. Y.; Chen, W.; Lu, L.; Nan, H.; Wang, D. W.; Zhang, Y. J.; Yang, Y. D.; Jia, C. L. A novel multiple interface structure with the segregation of dopants in lead-free ferroelectric (K0.5Na0.5)NbO3 thin films. Adv. Mater. Interfaces 2018, 5, 1700972.
Jeong, C. K.; Han, J. H.; Palneedi, H.; Park, H.; Hwang, G. T.; Joung, B.; Kim, S. G.; Shin, H. J.; Kang, I. S.; Ryu, J. et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 2017, 5, 074102.
Peddigari, M.; Patel, V.; Bharti, G. P.; Khare, A.; Pamu, D. Microwave dielectric and nonlinear optical studies on radio-frequency sputtered Dy2O3-doped KNN thin films. J. Am. Ceram. Soc. 2017, 100, 3013-3023.
Men, T. L.; Thong, H. C.; Li, J. T.; Li, M.; Zhang, J.; Zhong, V.; Luo, J.; Chu, X. C.; Wang, K.; Li, J. F. Domain growth dynamics in (K, Na)NbO3 ferroelectric thin films. Ceram. Int. 2017, 43, 9538-9542.
Wang, Y. M.; Yao, K.; Qin, X.; Mirshekarloo, M. S.; Liu, X. G.; Tay, F. E. H. High piezoelectric performance and phase transition in stressed lead-free (1–x)(K, Na)(Sb, Nb)O3–x(Bi, Na, K)ZrO3 thin films. Adv. Electron. Mater. 2017, 3, 1700033.
Lee, H. J.; Kim, I. W.; Kim, J. S.; Ahn, C. W.; Park, B. H. Ferroelectric and piezoelectric properties of Na0.52K0.48NbO3 thin films prepared by radio frequency magnetron sputtering. Appl. Phys. Lett. 2009, 94, 092902.
Kwak, J.; Kingon, A. I.; Kim, S. H. Lead-free (Na0.5, K0.5)NbO3 thin films for the implantable piezoelectric medical sensor applications. Mater. Lett. 2012, 82, 130-132.
Kanno, I.; Ichida, T.; Adachi, K.; Kotera, H.; Shibata, K.; Mishima, T. Power-generation performance of lead-free (K, Na)NbO3 piezoelectric thin-film energy harvesters. Sens. Actuators, A: Phys. 2012, 179, 132-136.
Kim, B. Y.; Lee, W. H.; Hwang, H. G.; Kim, D. H.; Kim, J. H.; Lee, S. H.; Nahm, S. Resistive switching memory integrated with nanogenerator for self-powered bioimplantable devices. Adv. Funct. Mater. 2016, 26, 5211-5221.
Kim, B. Y.; Hwang, H. G.; Woo, J. U.; Lee, W. H.; Lee, T. H.; Kang, C. Y.; Nahm, S. Nanogenerator-induced synaptic plasticity and metaplasticity of bio-realistic artificial synapses. NPG Asia Mater. 2017, 9, e381.
Tian, A. F.; Ren, W.; Wang, L. Y.; Shi, P.; Chen, X. F.; Wu, X. Q.; Yao, X. Effect of deposition temperature on orientation and electrical properties of (K0.5Na0.5)NbO3 thin films by pulsed laser deposition. Appl. Surf. Sci. 2012, 258, 2674-2678.
Kang, L. S.; Kim, B. Y.; Seo, I. T.; Seong, T. G.; Kim, J. S.; Sun, J. W.; Paik, D. S.; Hwang, I.; Park, B. H.; Nahm, S. Growth behavior and electrical properties of a (Na0.5K0.5)NbO3 thin film deposited on a Pt/Ti/SiO2/Si substrate using RFMagnetron sputtering. J. Am. Ceram. Soc. 2011, 94, 1970-1973.
Wang, X.; Helmersson, U.; Olafsson, S.; Rudner, S.; Wernlund, L. D.; Gevorgian, S. Growth and field dependent dielectric properties of epitaxial Na0.5K0.5NbO3 thin films. Appl. Phys. Lett. 1998, 73, 927.
Ryu, J.; Choi, J. J.; Hahn, B. D.; Park, D. S.; Yoon, W. H.; Kim, K. H. Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5) NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 2007, 90, 152901.
Kim, B. Y.; Seong, T. G.; Seo, I. T.; Jang, M. S.; Nahm, S.; Kang, J. Y.; Yoon, S. J. Effects of annealing atmosphere on the structural and electrical properties of (Na0.5K0.5)NbO3 thin films grown by RF magnetron sputtering. Acta Mater. 2012, 60, 3107-3112.
Kim, B. Y.; Seong, T. G.; Seo, I. T.; Kim, J. S.; Kang, C. Y.; Yoon, S. J.; Nahm, S. Effects of oxygen pressure on electrical properties of (Na0.5K0.5)NbO3 films grown on Pt/Ti/SiO2/Si substrates. Acta Mater. 2012, 60, 7034-7040.
Kweon, S. H.; Kim, J. H.; Im. M.; Lee, W. H.; Nahm, S. Physical properties of (Na1-xKx)NbO3 Thin film grown at low temperature using two-dimensional Ca2Nb3O10 nanosheet seed layer. ACS Appl. Mater. Interfaces 2018, 10, 25536-25546.
Lee, W. H.; Im, M.; Kweon, S. H.; Woo, J. U.; Nahm, S.; Choi, J. W.; Hwang, S. J. Synthesis of Sr2Nb3O10 nanosheets and their application for growth of thin film using an electrophoretic method. J. Am. Ceram. Soc. 2017, 100, 1098-1107.
Nguyen, M. D.; Yuan, H. Y.; Houwman, E. P.; Dekkers, M.; Koster, G.; ten Elshof, J. E.; Rijnders, G. Highly oriented growth of piezoelectric thin films on silicon using two-dimensional nanosheets as growth template layer. ACS Appl. Mater. Interfaces 2016, 8, 31120-31127.
Akatsuka, K.; Takanashi, G.; Ebina, Y.; Haga, M. A.; Sasaki, T. Electronic band structure of exfoliated titanium- and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J. Phys. Chem. C 2012, 116, 12426-12433.
Ma, R. Z.; Sasaki, T. Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 2015, 48, 136-143.
Hou, Y. F.; Zhang, T. D.; Li, W. L.; Cao, W. P.; Yu, Y.; Xu, D.; Wang, W.; Liu, X. L.; Fei, W. D. Self-polarization induced by lattice mismatch and defect dipole alignment in (001) BaTiO3/LaNiO3 polycrystalline film prepared by magnetron sputtering at low temperature. RSC Adv. 2015, 5, 61821–61827.