AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells

Hao Li1,§Shuai Ye1,§Jiaqing Guo1Huibo Wang2Wei Yan1( )Jun Song1( )Junle Qu1( )
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
Jiangsu Key Laboratory for Carbon-based Functional Materials and DevicesInstitute of Functional Nano and Soft Materials (FUNSOM)Soochow UniversitySuzhou215123China

§Hao Li and Shuai Ye contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Many kinds of nanoparticles and organic dyes as fluorescent probes have been used in the stimulated emission depletion (STED) nanoscopy. Due to high toxicity, photobleaching and non-water solubility, these fluorescent probes are hard to apply in living cell imaging. Here, we report a new fluorescence carbon dots (FNCDs) with high photoluminescence quantum yield (56%), low toxicity, anti-photobleaching and good water-solubility that suitable for live-cell imaging can be obtained by doping fluorine element. Moreover, the FNCDs can stain the nucleolus and tunneling nanotubes (TNTs) in the living cell. More importantly, for STED nanoscopy imaging, the FNCDs effectively depleted background signals and improved imaging resolution. Furthermore, the lateral resolution of single FNCDs size under the STED nanoscopy is up to 22.1 nm for FNCDs deposited on a glass slide was obtained. And because of their good water dispersibility, the higher resolution of single FNCDs size in the nucleolus of a living cell can be up to 19.7 nm. After the image optimization steps, the fine fluorescence images of TNTs diameter with ca. 75 nm resolution is obtained living cell, yielding a threefold enhancement compared with that in confocal imaging. Additionally, the FNCDs show excellent photobleaching resistance after 1, 000 scan cycles in the STED model. All results show that FNCDs have significant potential for application in STED nanoscopy.

Electronic Supplementary Material

Download File(s)
12274_2019_2554_MOESM1_ESM.pdf (3.1 MB)

References

1

Hell, S. W. Far-field optical nanoscopy. Science 2007, 316, 1153–1158.

2

Yan, W.; Peng, X.; Qi, J.; Gao, J.; Fan, S. P.; Wang, Q.; Qu, J. L.; Niu, H. B. Dynamic fluorescence lifetime imaging based on acousto-optic deflectors. J. Biomed. Opt. 2014, 19, 116004.

3

Egner, A.; Hell, S. W. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 2005, 15, 207–215.

4

Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen Wahrnehmung. Archiv Mikrosk. Anatomie 1873, 9, 413–418.

5

Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796.

6

Hell, S. W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782.

7

Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645.

8

Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 13081–13086.

9

Dertinger, T.; Colyer, R.; Iyer, G.; Weiss, S.; Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 2009, 106, 22287–22292.

10

Yang, X. S.; Xie, H.; Alonas, E.; Liu, Y. J.; Chen, X. Z.; Santangelo, P. J.; Ren, Q. S.; Xi, P.; Jin, D. Y. Mirror-enhanced super-resolution microscopy. Light Sci. Appl. 2016, 5, e16134.

11

Hell, S. W.; Dyba, M.; Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy. Curr. Opin. Neurobiol. 2004, 14, 599–609.

12

Hofmann, M.; Eggeling, C.; Jakobs, S.; Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA 2005, 102, 17565–17569.

13

Bossi, M.; Fölling, J.; Dyba, M.; Westphal, V.; Hell, S. W. Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New J. Phys. 2006, 8, 275.

14

Harke, B.; Keller, J.; Ullal, C. K.; Westphal, V.; Schönle, A.; Hell, S. W. Resolution Scaling in STED Microscopy. Opt. Express 2008, 16, 4154–1162.

15

Chen, Z.; Dong, G. P.; Gao, H. W.; Qiu, J. R. Two-/multi-wavelength light excitation effects in optical materials: From fundamentals to applications. Prog. Mater. Sci. 2019, 105, 100568.

16

Lin, Y. H.; Nienhaus, K.; Nienhaus, G. U. Nanoparticle probes for superresolution fluorescence microscopy. ChemNanoMat 2018, 4, 253–264.

17

Yang, S. T.; Wang, X.; Wang, H. F.; Lu, F. S.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y. F.; Chen, M. et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110–18114.

18

Jin, D. Y.; Xi, P.; Wang, B. M.; Zhang, L.; Enderlein, J.; Van Oijen, A. M. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 2018, 15, 415–423.

19

Irvine, S. E.; Staudt, T.; Rittweger, E.; Engelhardt, J.; Hell, S. W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew. Chem., Int. Ed. 2008, 120, 2725–2728.

20

Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.

21

Zhan, Q. Q.; Liu, H. C.; Wang, B. J.; Wu, Q. S.; Pu, R.; Zhou, C.; Huang, B. R.; Peng, X. Y.; Ågren, H.; He, S. L. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1058.

22

Yu, Y.; Feng, C.; Hong, Y. N.; Liu, J. Z.; Chen, S. J.; Ng, K. M.; Luo, K. Q.; Tang, B. Z. Cytophilic fluorescent bioprobes for long-term cell tracking. Adv. Mater. 2011, 23, 3298–3302.

23

Thomas, J. A. Optical imaging probes for biomolecules: An introductory perspective. Chem. Soc. Rev. 2015, 44, 4494–4500.

24

Hanne, J.; Falk, H. J.; Görlitz, F.; Hoyer, P.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 2015, 6, 7127.

25

Ye, S.; Yan, W.; Zhao, M. J.; Peng, X.; Song, J.; Qu, J. L. Low-saturation-intensity, high-photostability, and high-resolution STED nanoscopy assisted by CsPbBr3 quantum dots. Adv. Mater. 2018, 30, 1800167.

26

Ye, S.; Zhao, M. J.; Yu, M. S.; Zhu, M.; Yan, W.; Song, J.; Qu, J. L. Mechanistic investigation of upconversion photoluminescence in all-inorganic perovskite CsPbBrI2 nanocrystals. J. Phys. Chem. C 2018, 122, 3152–3156.

27

Deutsch, Z.; Neeman, L.; Oron, D. Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol. 2013, 8, 649–653.

28

Li, D. Y.; Qin, W.; Xu, B.; Qian, J.; Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 2017, 29, 1703643.

29

Wang, L. W.; Chen, B. L.; Yan, W.; Yang, Z. G.; Peng, X.; Lin, D. Y.; Weng, X. Y.; Ye, T.; Qu, J. L. Resolution improvement in STED super-resolution microscopy at low power using a phasor plot approach. Nanoscale 2018, 10, 16252–16260.

30

Peng, X. Y.; Huang, B. R.; Pu, R.; Liu, H. C.; Zhang, T.; Widengren, J.; Zhan, Q. Q.; Ågren, H. Fast upconversion super-resolution microscopy with 10 μs per pixel dwell times. Nanoscale 2019, 11, 1563–1569.

31

Ye, S.; Chen, G. Y.; Shao, W.; Qu, J. L.; Prasad, P. N. Tuning upconversion through a sensitizer/activator-isolated NaYF4 core/shell structure. Nanoscale 2015, 7, 3976–3984.

32

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

33

Li, H.; Huang, J.; Liu, Y.; Lu, F.; Zhong, J.; Wang, Y.; Li, S. M.; Lifshitz, Y.; Lee, S. T.; Kang, Z. H. Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Res. 2019, 12, 1585–1593.

34

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.

35

Bartelmess, J.; Quinn, S. J.; Giordani, S. Carbon nanomaterials: Multifunctional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 2015, 44, 4672–4698.

36

Li, H.; Huang, J.; Lu, F.; Liu, Y.; Song, Y. X.; Sun, Y. H.; Zhong, J.; Huang, H.; Wang, Y.; Li, S. M. et al. Impacts of carbon dots on rice plants: Boosting the growth and improving the disease resistance. ACS Appl. Bio Mater. 2018, 1, 663–672.

37

Leménager, G.; De Luca, E.; Sun, Y. P.; Pompa, P. P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 2014, 6, 8617–8623.

38

Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

39

Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreenivasan Sreeprasad, T.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219.

40

Li, H.; Kong, W. Q.; Liu, J.; Liu, N. Y.; Huang, H.; Liu, Y.; Kang, Z. H. Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 2015, 91, 66–75.

41

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

42

Feng, W.; Long, P.; Feng, Y. Y.; Li, Y. Two-dimensional fluorinated graphene: Synthesis, structures, properties and applications. Adv. Sci. 2016, 3, 1500413.

43

Li, H.; Huang, J.; Song, Y. X.; Zhang, M. L.; Wang, H. B.; Lu, F.; Huang, H.; Liu, Y.; Dai, X.; Gu, Z. L. et al. Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl. Mater. Interfaces 2018, 10, 26936–26946.

44

Li, H.; Zhang, M. L.; Song, Y. X.; Wang, H. B.; Liu, C. A.; Fu, Y. J.; Huang, H.; Liu, Y.; Kang, Z. H. Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. J. Mater. Chem. B 2018, 6, 5708–5717.

45

Dubois, M.; Guérin, K.; Pinheiro, J. P.; Fawal, Z.; Masin, F.; Hamwi, A. NMR and EPR studies of room temperature highly fluorinated graphite heat-treated under fluorine atmosphere. Carbon 2004, 42, 1931–1940.

46

Hamwi, A.; Daoud, M.; Cousseins, J. C. Graphite fluorides prepared at room temperature 1. Synthesis and characterization. Synth. Met. 1988, 26, 89–98.

47

Sun, C. B.; Feng, Y. Y.; Li, Y.; Qin, C. Q.; Zhang, Q. Q.; Feng, W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 2014, 6, 2634–2641.

48

Struzzi, C.; Scardamaglia, M.; Reckinger, N.; Colomer, J. F.; Sezen, H.; Amati, M.; Gregoratti, L.; Snyders, R.; Bittencourt, C. Fluorination of suspended graphene. Nano Res. 2017, 10, 3151–3163.

49

Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater. 2018, 28, 1800791.

50

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

51

Yang, L.; Wang, Z. R.; Wang, J.; Jiang, W. H.; Jiang, X. W.; Bai, Z. S.; He, Y. P.; Jiang, J. Q.; Wang, D. K.; Yang, L. Doxorubicin conjugated functionalizable carbon dots for nucleus targeted delivery and enhanced therapeutic efficacy. Nanoscale 2016, 8, 6801–6809.

52

Song, Z. Q.; Quan, F. Y.; Xu, Y. H.; Liu, M. L.; Cui, L.; Liu, J. Q. Multifunctional N, S Co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 2016, 104, 169–178.

53

Long, P.; Feng, Y. Y.; Li, Y.; Cao, C.; Li, S. W.; An, H. R.; Qin, C. Q.; Han, J. K.; Feng, W. Solid-state fluorescence of fluorine-modified carbon nanodots aggregates triggered by poly(ethylene glycol). ACS Appl. Mater. Interfaces 2017, 9, 37981–37990.

54

Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

55

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

56

Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

57

Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated Sp2 -domain controlling and surface charges engineering. Adv. Mater. 2016, 28, 3516–3521.

58

Sartori-Rupp, A.; Cordero Cervantes, D.; Pepe, A.; Gousset, K.; Delage, E.; Corroyer-Dulmont, S.; Schmitt, C.; Krijnse-Locker, J.; Zurzolo, C. Correlative cryo-electron microscopy reveals the structure of TNTs in neuronal cells. Nat. Commun. 2019, 10, 342.

59

Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 2004, 303, 1007–1010.

60

Astanina, K.; Koch, M.; Jüngst, C.; Zumbusch, A.; Kiemer, A. K. Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Sci. Rep. 2015, 5, 11453.

61

Ariazi, J.; Benowitz, A.; De Biasi, V.; Den Boer, M. L.; Cherqui, S.; Cui, H. F.; Douillet, N.; Eugenin, E. A.; Favre, D.; Goodman, S. et al. Tunneling nanotubes and gap junctions-their role in long-range intercellular communication during development, health, and disease conditions. Front. Mol. Neurosci. 2017, 10, 333.

62

Wang, L. W.; Yan, W.; Li, R. Z.; Weng, X. Y.; Zhang, J.; Yang, Z. G.; Liu, L. W.; Ye, T.; Qu, J. L. Aberration correction for improving the image quality in STED microscopy using the genetic algorithm. Nanophotonics 2018, 7, 1971–1980.

63

Yan, W.; Yang, Y. L.; Tan, Y.; Chen, X.; Li, Y.; Qu, J. L.; Ye, T. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Res. 2017, 5, 176–181.

Nano Research
Pages 3075-3084
Cite this article:
Li H, Ye S, Guo J, et al. Biocompatible carbon dots with low-saturation-intensity and high-photobleaching-resistance for STED nanoscopy imaging of the nucleolus and tunneling nanotubes in living cells. Nano Research, 2019, 12(12): 3075-3084. https://doi.org/10.1007/s12274-019-2554-x
Topics:

794

Views

72

Crossref

N/A

Web of Science

72

Scopus

5

CSCD

Altmetrics

Received: 20 September 2019
Revised: 23 October 2019
Accepted: 25 October 2019
Published: 13 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return