Many kinds of nanoparticles and organic dyes as fluorescent probes have been used in the stimulated emission depletion (STED) nanoscopy. Due to high toxicity, photobleaching and non-water solubility, these fluorescent probes are hard to apply in living cell imaging. Here, we report a new fluorescence carbon dots (FNCDs) with high photoluminescence quantum yield (56%), low toxicity, anti-photobleaching and good water-solubility that suitable for live-cell imaging can be obtained by doping fluorine element. Moreover, the FNCDs can stain the nucleolus and tunneling nanotubes (TNTs) in the living cell. More importantly, for STED nanoscopy imaging, the FNCDs effectively depleted background signals and improved imaging resolution. Furthermore, the lateral resolution of single FNCDs size under the STED nanoscopy is up to 22.1 nm for FNCDs deposited on a glass slide was obtained. And because of their good water dispersibility, the higher resolution of single FNCDs size in the nucleolus of a living cell can be up to 19.7 nm. After the image optimization steps, the fine fluorescence images of TNTs diameter with ca. 75 nm resolution is obtained living cell, yielding a threefold enhancement compared with that in confocal imaging. Additionally, the FNCDs show excellent photobleaching resistance after 1, 000 scan cycles in the STED model. All results show that FNCDs have significant potential for application in STED nanoscopy.
- Article type
- Year
- Co-author
Halide perovskite (CsPbX3, X = Cl, Br, or I) quantum dots have received increasing attention as novel colloidal nanocrystals (NCs). Accurate control of emission bands and NC morphologies are vital prerequisites for most CsPbX3 NC practical applications. Therefore, a facile method of synthesizing CsPbX3 (X = Cl, Br, or I) NCs in the nonpolar solvent octane was developed. The process was conducted in air at ~ 90 ℃ to synthesize high-quality CsPbX3 NCs showing 12–44 nm wide emission and high photoluminescence quantum yield, exceeding 90%. An in situ anion-exchange method was developed to tune CsPbX3 NC photoluminescence emission, using PbX2 dissolved in octane as the halide source. NC morphology was controlled by dissolving specific metal–organic salts in the precursor solution prior to nucleation, and nanocubes, nanodots, nanosheets, nanoplatelets, nanorods, and nanowires were obtained following the same general method providing a facile, versatile route to controlling CsPbX3 NC emission bands and morphologies, which will broaden the range of CsPbX3 NC practical applications.