Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage

Lijun LiuChenyi ZhaoLi DingLianmao Peng()Zhiyong Zhang()
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A small bandgap and light carrier effective mass (m0) lead to obvious ambipolar transport behavior in carbon nanotube (CNT) field-effect transistors (FETs), including a high off-state current and severe degradation of the subthreshold swing (SS) with increasing drain bias voltage. We demonstrate a drain-engineered method to cope with this common problem in CNT-film FETs with a sub-μm channel length, i.e., suppressing the ambipolar behavior while maintaining high on-state performance by adopting a feedback gate (FBG) structure to extend the drain region from the CNT/metal contact to the proximate CNT channels to suppress the tunneling current. Sub-400-nm-channel-length FETs with a FBG structure statistically present a high on/off ratio of up to 104 and a sub-200 mV/dec SS under a high drain bias of up to -2 V while maintaining a high on-state current of 0.2 mA/μm or a peak transconductance of 0.2 mS/μm. By lowering the supply voltage to 1.5 V, FBG CNT-film FETs can meet the requirement of standard-performance ultra large scale integrated circuits (ULSICs). Therefore, the introduction of the drain engineering structure enables applications of CNT-film-based FETs in ULSICs and could also be widely extended to other small-bandgap semiconductor-based FETs for an improvement in their off-state property.

Electronic Supplementary Material

Download File(s)
12274_2019_2558_MOESM1_ESM.pdf (1.2 MB)

References

[1]
Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153-158.
[2]
Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.
[3]
Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605-615.
[4]
Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720-1749.
[5]
Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730-8745.
[6]
Choi, S. J.; Bennett, P.; Takei, K.; Wang, C.; Lo, C. C.; Javey, A.; Bokor, J. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 2012, 7, 798-803.
[7]
Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.
[8]
Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271-276.
[9]
Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369-1372.
[10]
Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758-762.
[11]
Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858-862.
[12]
Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60-65.
[13]
Asada, Y.; Miyata, Y.; Ohno, Y.; Kitaura, R.; Sugai, T.; Mizutani, T.; Shinohara, H. High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 2010, 22, 2698-2701.
[14]
Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40-45.
[15]
Liu, L. J.; Ding, L.; Zhong, D. L.; Han, J.; Wang, S.; Meng, Q. H.; Qiu, C. G.; Zhang, X. Y.; Peng, L. M.; Zhang, Z. Y. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 2019, 13, 2526-2535.
[16]
Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L. E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 2006, 6, 1842-1846.
[17]
Usuda, K.; Kamata, Y.; Kamimuta, Y.; Mori, T.; Koike, M.; Tezuka, T. High-performance poly-Ge short-channel metal-oxide-semiconductor field-effect transistors formed on SiO2 layer by flash lamp annealing. Appl. Phys. Express 2014, 7, 056501.
[18]
Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696-3701.
[19]
Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q. et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett. 2009, 9, 4209-4214.
[20]
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.
[21]
Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.
[22]
Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.
[23]
Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801.
[24]
Ogura, S.; Tsang, P. J.; Walker, W. W.; Critchlow, D. L.; Shepard, J. F. Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE J. Solid-State Circuits 1980, 15, 424-432.
[25]
Wu, Y. C.; Chang, T. C.; Chang, C. Y.; Chen, C. S.; Tu, C. H.; Liu, P. T.; Zan, H. W.; Tai, Y. H. High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure. Appl. Phys. Lett. 2004, 84, 3822-3824.
[26]
Hsu, F. C.; Grinolds, H. Structure-enhanced MOSFET degradation due to hot-electron injection. IEEE Electron Device Lett. 1984, 5, 71-74.
[27]
Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447-450.
[28]
Peng, L. M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: recent advances. Mater. Today 2014, 17, 433-442.
[29]
Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603-3607.
[30]
Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781-3787.
[31]
Liu, L. J.; Qiu, C. G.; Zhong, D. L.; Si, J.; Zhang, Z. Y.; Peng, L. M. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 2017, 9, 9615-9621.
[32]
Suriyasena Liyanage, L.; Xu, X. Q.; Pitner, G.; Bao, Z. N.; Wong, H. S. P. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett. 2014, 14, 1884-1890.
[33]
Qiu, C. G.; Zhang, Z. Y.; Zhong, D. L.; Si, J.; Yang, Y. J.; Peng, L. M. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio. ACS Nano 2015, 9, 969-977.
[34]
Zhao, C. Y.; Zhong, D. L.; Han, J.; Liu, L. J.; Zhang, Z. Y.; Peng, L. M. Exploring the performance limit of carbon nanotube network film field-effect transistors for digital integrated circuit applications. Adv. Funct. Mater. 2019, 29, 1808574.
[35]
Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234-238.
[36]
Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol. 2010, 5, 27-31.
[37]
Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.
[38]
Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.
[39]
Jan, C. H.; Agostinelli, M.; Buehler, M.; Chen, Z. P.; Choi, S. J.; Curello, G.; Deshpande, H.; Gannavaram, S.; Hafez, W.; Jalan, U. et al. A 32nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, MD, USA, 2009, pp 1-4.
Nano Research
Pages 1875-1881
Cite this article:
Liu L, Zhao C, Ding L, et al. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Research, 2020, 13(7): 1875-1881. https://doi.org/10.1007/s12274-019-2558-6
Topics:
Part of a topical collection:
Metrics & Citations  
Article History
Copyright
Return