AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage

Lijun LiuChenyi ZhaoLi DingLianmao Peng( )Zhiyong Zhang( )
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Abstract

A small bandgap and light carrier effective mass (m0) lead to obvious ambipolar transport behavior in carbon nanotube (CNT) field-effect transistors (FETs), including a high off-state current and severe degradation of the subthreshold swing (SS) with increasing drain bias voltage. We demonstrate a drain-engineered method to cope with this common problem in CNT-film FETs with a sub-μm channel length, i.e., suppressing the ambipolar behavior while maintaining high on-state performance by adopting a feedback gate (FBG) structure to extend the drain region from the CNT/metal contact to the proximate CNT channels to suppress the tunneling current. Sub-400-nm-channel-length FETs with a FBG structure statistically present a high on/off ratio of up to 104 and a sub-200 mV/dec SS under a high drain bias of up to -2 V while maintaining a high on-state current of 0.2 mA/μm or a peak transconductance of 0.2 mS/μm. By lowering the supply voltage to 1.5 V, FBG CNT-film FETs can meet the requirement of standard-performance ultra large scale integrated circuits (ULSICs). Therefore, the introduction of the drain engineering structure enables applications of CNT-film-based FETs in ULSICs and could also be widely extended to other small-bandgap semiconductor-based FETs for an improvement in their off-state property.

Electronic Supplementary Material

Download File(s)
12274_2019_2558_MOESM1_ESM.pdf (1.2 MB)

References

[1]
Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153-158.
[2]
Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.
[3]
Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605-615.
[4]
Cavin, R. K.; Lugli, P.; Zhirnov, V. V. Science and engineering beyond Moore’s law. Proc. IEEE 2012, 100, 1720-1749.
[5]
Tulevski, G. S.; Franklin, A. D.; Frank, D.; Lobez, J. M.; Cao, Q.; Park, H.; Afzali, A.; Han, S. J.; Hannon, J. B.; Haensch, W. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 2014, 8, 8730-8745.
[6]
Choi, S. J.; Bennett, P.; Takei, K.; Wang, C.; Lo, C. C.; Javey, A.; Bokor, J. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 2012, 7, 798-803.
[7]
Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.
[8]
Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271-276.
[9]
Cao, Q.; Tersoff, J.; Farmer, D. B.; Zhu, Y.; Han, S. J. Carbon nanotube transistors scaled to a 40-nanometer footprint. Science 2017, 356, 1369-1372.
[10]
Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758-762.
[11]
Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858-862.
[12]
Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60-65.
[13]
Asada, Y.; Miyata, Y.; Ohno, Y.; Kitaura, R.; Sugai, T.; Mizutani, T.; Shinohara, H. High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 2010, 22, 2698-2701.
[14]
Zhong, D. L.; Zhang, Z. Y.; Ding, L.; Han, J.; Xiao, M. M.; Si, J.; Xu, L.; Qiu, C. G.; Peng, L. M. Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 2018, 1, 40-45.
[15]
Liu, L. J.; Ding, L.; Zhong, D. L.; Han, J.; Wang, S.; Meng, Q. H.; Qiu, C. G.; Zhang, X. Y.; Peng, L. M.; Zhang, Z. Y. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano 2019, 13, 2526-2535.
[16]
Lind, E.; Persson, A. I.; Samuelson, L.; Wernersson, L. E. Improved subthreshold slope in an InAs nanowire heterostructure field-effect transistor. Nano Lett. 2006, 6, 1842-1846.
[17]
Usuda, K.; Kamata, Y.; Kamimuta, Y.; Mori, T.; Koike, M.; Tezuka, T. High-performance poly-Ge short-channel metal-oxide-semiconductor field-effect transistors formed on SiO2 layer by flash lamp annealing. Appl. Phys. Express 2014, 7, 056501.
[18]
Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696-3701.
[19]
Ding, L.; Wang, S.; Zhang, Z. Y.; Zeng, Q. S.; Wang, Z. X.; Pei, T.; Yang, L. J.; Liang, X. L.; Shen, J.; Chen, Q. et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: Scaling and comparison with Sc-contacted devices. Nano Lett. 2009, 9, 4209-4214.
[20]
Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.
[21]
Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.
[22]
Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.
[23]
Appenzeller, J.; Knoch, J.; Derycke, V.; Martel, R.; Wind, S.; Avouris. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 2002, 89, 126801.
[24]
Ogura, S.; Tsang, P. J.; Walker, W. W.; Critchlow, D. L.; Shepard, J. F. Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE J. Solid-State Circuits 1980, 15, 424-432.
[25]
Wu, Y. C.; Chang, T. C.; Chang, C. Y.; Chen, C. S.; Tu, C. H.; Liu, P. T.; Zan, H. W.; Tai, Y. H. High-performance polycrystalline silicon thin-film transistor with multiple nanowire channels and lightly doped drain structure. Appl. Phys. Lett. 2004, 84, 3822-3824.
[26]
Hsu, F. C.; Grinolds, H. Structure-enhanced MOSFET degradation due to hot-electron injection. IEEE Electron Device Lett. 1984, 5, 71-74.
[27]
Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447-450.
[28]
Peng, L. M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: recent advances. Mater. Today 2014, 17, 433-442.
[29]
Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603-3607.
[30]
Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781-3787.
[31]
Liu, L. J.; Qiu, C. G.; Zhong, D. L.; Si, J.; Zhang, Z. Y.; Peng, L. M. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 2017, 9, 9615-9621.
[32]
Suriyasena Liyanage, L.; Xu, X. Q.; Pitner, G.; Bao, Z. N.; Wong, H. S. P. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett. 2014, 14, 1884-1890.
[33]
Qiu, C. G.; Zhang, Z. Y.; Zhong, D. L.; Si, J.; Yang, Y. J.; Peng, L. M. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio. ACS Nano 2015, 9, 969-977.
[34]
Zhao, C. Y.; Zhong, D. L.; Han, J.; Liu, L. J.; Zhang, Z. Y.; Peng, L. M. Exploring the performance limit of carbon nanotube network film field-effect transistors for digital integrated circuit applications. Adv. Funct. Mater. 2019, 29, 1808574.
[35]
Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234-238.
[36]
Mueller, T.; Kinoshita, M.; Steiner, M.; Perebeinos, V.; Bol, A. A.; Farmer, D. B.; Avouris, P. Efficient narrow-band light emission from a single carbon nanotube p-n diode. Nat. Nanotechnol. 2010, 5, 27-31.
[37]
Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268-272.
[38]
Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.
[39]
Jan, C. H.; Agostinelli, M.; Buehler, M.; Chen, Z. P.; Choi, S. J.; Curello, G.; Deshpande, H.; Gannavaram, S.; Hafez, W.; Jalan, U. et al. A 32nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra low power, high performance, and high density product applications. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, MD, USA, 2009, pp 1-4.
Nano Research
Pages 1875-1881
Cite this article:
Liu L, Zhao C, Ding L, et al. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Research, 2020, 13(7): 1875-1881. https://doi.org/10.1007/s12274-019-2558-6
Topics:
Part of a topical collection:

907

Views

14

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 18 September 2019
Revised: 16 October 2019
Accepted: 31 October 2019
Published: 16 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return