AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate

Lei Zheng1,2Feng Guo1,2Tuo Kang2Jin Yang2Ya Liu2Wei Gu2Yanfei Zhao3Hongzhen Lin2Yanbin Shen2( )Wei Lu2Liwei Chen2,4( )
School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinses Academy of Science (CAS), Suzhou 215123, China
In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

Abstract

Li has been considered as the ultimate anode material for high energy density secondary Li batteries. However, its practical application has been limited due to its low Coulombic efficiency (CE) and the formation of lithium dendrites. Recently, we have developed a microspherical Li-carbon nanotube (Li-CNT) composite material passivated with octadecylphosphonic acid (OPA) self-assembled monolayer (SAM) exhibiting suppressed lithium dendrite formation and improved environmental/electrochemical stability. In this work, we demonstrated the significantly enhanced passivation effects of a SAM using dihexadecanoalkyl phosphate (DHP), a molecule that is comprised of double hydrophobic alkyl chains and forms a denser SAM on surfaces with large curvature. As a result, the DHP SAM delivers superior environmental and electrochemical stability to the OPA passivated Li-CNT material. In specific, the DHP passivated Li-CNT composite (DHP-Li-CNT) delivers a high CE of 99.25% under a 33.3% depth of discharge (DOD) at 1 C, when it is paired with a LiFePO4 cathode. The evolution of the SAM during cycling and the effects of DOD and current density on the CE of the DHP-Li-CNT anode have also been investigated. The improved SAM passivation constitutes an important step in achieving the goal of practically applicable Li anodes.

Electronic Supplementary Material

Download File(s)
12274_2019_2565_MOESM1_ESM.pdf (1.4 MB)

References

[1]
Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.
[2]
Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194-206.
[3]
Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513-537.
[4]
Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.
[5]
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403-10473.
[6]
Cao, R. G.; Xu, W.; Lv, D. P.; Xiao, J.; Zhang, J. G. Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1402273.
[7]
Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287-3295.
[8]
Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution. J. Power Sources 2014, 262, 338-343.
[9]
Lu, Y. Y.; Das, S. K.; Moganty, S. S.; Archer, L. A. Ionic liquid-nanoparticle hybrid electrolytes and their application in secondary lithium-metal batteries. Adv. Mater. 2012, 24, 4430-4435.
[10]
Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.
[11]
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
[12]
Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764-7768.
[13]
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.
[14]
Zhang, Y. H.; Qian, J. F.; Xu, W.; Russell, S. M.; Chen, X. L.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D. H.; Cao, R. G. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 2014, 14, 6889-6896.
[15]
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J. et al. Dendrite-Free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450-4456.
[16]
Ma, L. B.; Chen, R. P.; Hu, Y.; Zhang, W. J.; Zhu, G. Y.; Zhao, P. Y.; Chen, T.; Wang, C. X.; Yan, W.; Wang, Y. R. et al. Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Mater. 2018, 14, 258-266.
[17]
Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Zhao, P. Y.; Hu, Y.; Wang, Y. R.; Wang, L.; Chen, R. P.; Chen, T.; Tie, Z. X. et al. Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries. Nano Res. 2018, 11, 6436-6446.
[18]
Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rosenman, A.; Frimer, A.; Aurbach, D. Review-development of advanced rechargeable batteries: A continuous challenge in the choice of suitable electrolyte solutions. J. Electrochem. Soc. 2015, 162, A2424-A2438.
[19]
Chen, T.; Kong, W. H.; Zhang, Z. W.; Wang, L.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Yan, W.; Wang, Y. R. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17-25.
[20]
Liu, K.; Pei, A.; Lee, H. R.; Kong, B.; Liu, N.; Lin, D. C.; Liu, Y. Y.; Liu, C.; Hsu, P. C.; Bao, Z. A. et al. Lithium metal anodes with an adaptive “solid-liquid” interfacial protective layer. J. Am. Chem. Soc. 2017, 139, 4815-4820.
[21]
Zhu, B.; Jin, Y.; Hu, X. Z.; Zheng, Q. H.; Zhang, S.; Wang, Q. J.; Zhu, J. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 2017, 29, 1603755.
[22]
Cao, Z. Y.; Xu, P. Y.; Zhai, H. W.; Du, S. C.; Mandal, J.; Dontigny, M.; Zaghib, K.; Yang, Y. Ambient-air stable lithiated anode for rechargeable li-ion batteries with high energy density. Nano Lett. 2016, 16, 7235-7240.
[23]
Chen, T.; Kong, W. K.; Zhao, P. Y; Lin, H. N; Hu, Y; Chen, R. P; Yan, W; Jin Z. Dendrite-free and stable lithium metal anodes enabled by an antimony-based lithiophilic interphase. Chem. Mater. 2019, 18, 7565-7573.
[24]
Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Jiao, S. H.; Polzin, B. J.; Zhang, J. G.; Xu, W. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2017, 2, 17012.
[25]
Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.
[26]
Kim, K.; Park, I.; Ha, S. Y.; Kim, Y.; Woo, M. H.; Jeong, M. H.; Shin, W. C.; Ue, M.; Hong, S. Y.; Choi, N. S. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries. Electrochim. Acta 2017, 225, 358-368.
[27]
Wan, G. J.; Guo, F. H.; Li, H.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Li, Y. X.; Yang, H. X. Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS Appl. Mater. Interfaces 2018, 10, 593-601.
[28]
Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578-A1583.
[29]
Ota, H.; Shima, K.; Ue, M.; Yamaki, J. I. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 2004, 49, 565-572.
[30]
Sano, H.; Sakaebe, H.; Matsumoto, H. Effect of organic additives on electrochemical properties of Li anode in room temperature ionic liquid. J. Electrochem. Soc. 2011, 158, A316-A321.
[31]
Hu, J. L.; Chen, K. Y.; Li, C. L. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl. Mater. Interfaces 2018, 10, 34322-34331.
[32]
Sun, H. T.; Zhu, J.; Baumann, D.; Peng, L. L.; Xu, Y. X.; Shakir, I.; Huang, Y.; Duan, X. F. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater. 2019, 4, 45-60.
[33]
Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.
[34]
Go, W.; Kim, M. H.; Park, J.; Lim, C. H.; Joo, S. H.; Kim, Y.; Lee, H. W. Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes. Nano Lett. 2019, 19, 1504-1511.
[35]
Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932-6939.
[36]
Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431-4437.
[37]
Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626-632.
[38]
Lin, D. C.; Zhao, J.; Sun, J.; Yao, H. B.; Liu, Y. Y.; Yan, K.; Cui, Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. USA 2017, 114, 4613-4618.
[39]
Wang, Y. L.; Shen, Y. B.; Du, Z. L.; Zhang, X. F.; Wang, K.; Zhang, H. Y.; Kang, T.; Guo, F.; Liu, C. H.; Wu, X. D. et al. A lithium-carbon nanotube composite for stable lithium anodes. J. Mater. Chem. A 2017, 5, 23434-23439.
[40]
Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634-3640.
[41]
Maddanimath, T.; Khollam, Y. B.; Aslam, A.; Mulla, I. S.; Vijayamohanan, K. Self-assembled monolayers of diphenyl disulphide: A novel cathode material for rechargeable lithium batteries. J. Power Sources 2003, 124, 133-142.
[42]
Bobb-Semple, D.; Nardi, K. L.; Draeger, N.; Hausmann, D. M.; Bent, S. F. Area-selective atomic layer deposition assisted by self-assembled monolayers: A comparison of Cu, Co, W, and Ru. Chem. Mater. 2019, 31, 1635-1645.
[43]
Dubey, M.; Weidner, T.; Gamble, L. J.; Castner, D. G. Structure and order of phosphonic acid-based self-assembled monolayers on Si(100). Langmuir 2010, 26, 14747-14754.
[44]
Liu, Y.; Wolf, L. K.; Messmer, M. C. A study of alkyl chain conformational changes in self-assembled n-octadecyltrichlorosilane monolayers on fused silica surfaces. Langmuir 2001, 17, 4329-4335.
[45]
Kang, T.; Wang, Y. L.; Guo, F.; Liu, C. H.; Zhao, J. H.; Yang, J.; Lin, H. Z.; Qiu, Y. J.; Shen, Y. B.; Lu, W. et al. Self-assembled monolayer enables slurry-coating of Li anode. ACS Cent. Sci. 2019, 5, 468-476.
[46]
Contour, J.; Salesse, A.; Froment, M.; Garreau, M.; Thevenin, J.; Warin, D. Analysis by electron-microscopy and XPS of lithium surfaces polarized in anhydrous organic electrolytes. J. Microsc. Spect. Electron. 1979, 4, 483-491.
[47]
Morgan, W. E.; Van Wazer, J. R.; Stec, W. J. Inner-orbital photoelectron spectroscopy of the alkali metal halides, perchlorates, phosphates, and pyrophosphates. J. Am. Chem. Soc. 1973, 95, 751-755.
[48]
Bordenyuk, A. N.; Weeraman, C.; Yatawara, A.; Jayathilake, H. D.; Stiopkin, I.; Liu, Y.; Benderskii, A. V. Vibrational sum frequency generation spectroscopy of dodecanethiol on metal nanoparticles. J. Phys. Chem. C 2007, 111, 8925-8933.
[49]
Weeraman, C.; Yatawara, A. K.; Bordenyuk, A. N.; Benderskii, A. V. Effect of nanoscale geometry on molecular conformation: Vibrational sum-frequency generation of alkanethiols on gold nanoparticles. J. Am. Chem. Soc. 2006, 128, 14244-14245.
Nano Research
Pages 1324-1331
Cite this article:
Zheng L, Guo F, Kang T, et al. Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate. Nano Research, 2020, 13(5): 1324-1331. https://doi.org/10.1007/s12274-019-2565-7
Topics:

761

Views

22

Crossref

N/A

Web of Science

23

Scopus

4

CSCD

Altmetrics

Received: 11 August 2019
Revised: 16 October 2019
Accepted: 06 November 2019
Published: 04 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return