Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Polaritons are arousing tremendous interests in physics and material sciences for their unique and amazing properties, especially including the condensation, lasing without inversion and even room-temperature superfluidity. Herein, we propose a cell vibron polariton (cell-VP): a collectively coherent mode of a photon and all phospholipid molecules in a myelin sheath formed by glial cells. Cell-VP can be resonantly self-confined in the myelin sheath under physiological conditions. The observations benefit from the specifically compact, ordered and polar thin-film structure of the sheath, and the relatively strong coupling of the mid-infrared photon with the vibrons of phospholipid tails in the myelin. The underlying physics is revealed to be the collectively coherent superposition of the photon and vibrons, the polariton induced significant enhancement of myelin permittivity, and the resonance of the polariton with the sheath. The captured cell-VPs in myelin sheaths may provide a promising way for super-efficient consumption of extra-weak bioenergy and even directly serve for quantum information. These findings further the understanding of nervous system operations at cellular level from the view of quantum mechanics.