AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cell vibron polariton resonantly self-confined in the myelin sheath of nerve

Bo Song1( )Yousheng Shu2
School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
Show Author Information

Graphical Abstract

Abstract

Polaritons are arousing tremendous interests in physics and material sciences for their unique and amazing properties, especially including the condensation, lasing without inversion and even room-temperature superfluidity. Herein, we propose a cell vibron polariton (cell-VP): a collectively coherent mode of a photon and all phospholipid molecules in a myelin sheath formed by glial cells. Cell-VP can be resonantly self-confined in the myelin sheath under physiological conditions. The observations benefit from the specifically compact, ordered and polar thin-film structure of the sheath, and the relatively strong coupling of the mid-infrared photon with the vibrons of phospholipid tails in the myelin. The underlying physics is revealed to be the collectively coherent superposition of the photon and vibrons, the polariton induced significant enhancement of myelin permittivity, and the resonance of the polariton with the sheath. The captured cell-VPs in myelin sheaths may provide a promising way for super-efficient consumption of extra-weak bioenergy and even directly serve for quantum information. These findings further the understanding of nervous system operations at cellular level from the view of quantum mechanics.

Electronic Supplementary Material

Download File(s)
12274_2019_2568_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Huang, K. Lattice vibrations and optical waves in ionic crystals. Nature 1951, 167, 779-780.
[2]
Pines, D.; Bohm, D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Phys. Rev. 1952, 85, 338-353.
[3]
Deng, H.; Weihs, G.; Santori, C.; Bloch, J.; Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 2002, 298, 199-202.
[4]
Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J. M. J.; Marchetti, F. M.; Szymańska, M. H.; André, R.; Staehli, J. L. et al. Bose-Einstein condensation of exciton polaritons. Nature 2006, 443, 409-414.
[5]
Lerario, G.; Fieramosca, A.; Barachati, F.; Ballarini, D.; Daskalakis, K. S.; Dominici, L.; De Giorgi, M.; Maier, S. A.; Gigli, G.; Kéna-Cohen, S. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 2017, 13, 837-841.
[6]
Schneider, C.; Rahimi-Iman, A.; Kim, N. Y.; Fischer, J.; Savenko, I. G.; Amthor, M.; Lermer, M.; Wolf, A.; Worschech, L.; Kulakovskii, V. D. et al. An electrically pumped polariton laser. Nature 2013, 497, 348-352.
[7]
Cui, Q. H.; Zhao, Y. S; Yao, J. N. Controlled synthesis of organic nanophotonic materials with specific structures and compositions. Adv. Mater. 2014, 26, 6852-6870.
[8]
Shalabney, A.; George, J.; Hiura, H.; Hutchison, J. A.; Genet, C.; Hellwig, P.; Ebbesen, T. W. Enhanced Raman scattering from vibro-polariton hybrid states. Angew. Chem., Int. Ed. 2015, 54, 7971-7975.
[9]
Ballarini, D.; De Giorgi, M.; Cancellieri, E.; Houdré, R.; Giacobino, E.; Cingolani, R.; Bramati, A.; Gigli, G.; Sanvitto. D. All-optical polariton transistor. Nat. Commun. 2013, 4, 1778.
[10]
Zalc, B.; Colman, D. R. Origins of vertebrate success. Science 2000, 288, 271-272.
[11]
Hartline, D. K.; Colman, D. R. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 2007, 17, R29-R35.
[12]
Salzer, J. L.; Zalc, B. Myelination. Curr. Biol. 2016, 26, R971-R975.
[13]
Damasio, A.; Carvalho, G. B. The nature of feelings: Evolutionary and neurobiological origins. Nat. Rev. Neurosci. 2013, 14, 143-152.
[14]
Sampaio-Baptista, C.; Johansen-Berg, H. White matter plasticity in the adult brain. Neuron 2017, 96, 1239-1251.
[15]
Arbuthnott, E. R.; Boyd, I. A.; Kalu, K. U. Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity. J. Physiol. 1980, 308, 125-157.
[16]
Debanne, D.; Campanac, E.; Bialowas, A.; Carlier, E.; Alcaraz, G. Axon physiology. Physiol. Rev. 2011, 91, 555-602.
[17]
Michailov, G. V.; Sereda, M. W.; Brinkmann, B. G.; Fischer, T. M.; Haug, B.; Birchmeier, C.; Role, L.; Lai, C.; Schwab, M. H.; Nave, K. A. Axonal neuregulin-1 regulates myelin sheath thickness. Science 2004, 304, 700-703.
[18]
Kwon, J.; Kim, M.; Park, H.; Kang, B. M.; Jo, Y.; Kim, J. H.; James, O.; Yun, S. H.; Kim, S. G.; Suh, M. et al. Label-free nanoscale optical metrology on myelinated axons in vivo. Nat. Commun. 2017, 8, 1832.
[19]
Nave, K. A.; Trapp, B. D. Axon-glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 2008, 31, 535-561.
[20]
Ohno, M.; Hiraoka, Y.; Matsuoka, T.; Tomimoto, H.; Takao, K.; Miyakawa, T.; Oshima, N.; Kiyonari, H.; Kimura, T.; Kita, T. et al. Nardilysin regulates axonal maturation and myelination in the central and peripheral nervous system. Nat. Neurosci. 2009, 12, 1506-1513.
[21]
Káradóttir, R. T.; Stockley, J. H. Deconstructing myelination: It all comes down to size. Nat. Methods 2012, 9, 883-884.
[22]
Lee, S.; Leach, M. K.; Redmond, S. A.; Chong, S. Y. C.; Mellon, S. H.; Tuck, S. J.; Feng, Z. Q.; Corey, J. M.; Chan, J. R. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Methods 2012, 9, 917-922.
[23]
Fields, R. D. Myelin-more than insulation. Science 2014, 344, 264-266.
[24]
Salri, V.; Valian, H.; Bassereh, H.; Bókkon, I.; Barkhordari, A. Ultraweak photon emission in the brain. J. Integr. Neurosci. 2015, 14, 419-429.
[25]
Thar, R.; Kühl, M. Propagation of electromagnetic radiation in mitochondria? J. Theor. Biol. 2004, 230, 261-270.
[26]
Bagkos, G.; Koufopoulos, K.; Piperi, C. Mitochondrial emitted electromagnetic signals mediate retrograde signaling. Med. Hypotheses 2015, 85, 810-818.
[27]
Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry, 5th ed.; W.H. Freeman: New York, 2008.
[28]
Kumar, S.; Boone, K.; Tuszyński, J.; Barclay, P.; Simon, C. Possible existence of optical communication channels in the brain. Sci. Rep. 2016, 6, 36508.
[29]
Zangari, A.; Micheli, D.; Galeazzi, R.; Tozzi, A. Node of Ranvier as an array of bio-nanoantennas for infrared communication in nerve tissue. Sci. Rep. 2018, 8, 539.
[30]
Liu, G. Z.; Chang, C.; Qiao, Z.; Wu, K. J.; Zhu, Z.; Cui, G. Q.; Peng, W. Y.; Tang, Y. Z.; Li, J.; Fan, C. H. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater. 2018, 14, 1807862.
[31]
Movasaghi, Z.; Rehman, S.; ur Rehman, I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008, 43, 134-179.
[32]
Caine, S.; Heraud, P.; Tobin, M. J.; McNaughton, D.; Bernard, C. C. A. The application of Fourier transform infrared microspectroscopy for the study of diseased central nervous system tissue. Neuroimage 2012, 59, 3624-3640.
[33]
Mei, W. P. About the nature of biophotons. J. Boil. Syst. 1994, 2, 25-42.
[34]
Tang, R. D.; Dai, J. P. Spatiotemporal imaging of glutamate-induced biophotonic activities and transmission in neural circuits. PLoS One 2014, 9, e85643.
[35]
Zhang, X. Q.; Jiang, L. Quantum-confined ion superfluid in nerve signal transmission. Nano Res. 2019, 12, 1219-1221.
[36]
Zarkeshian, P.; Kumar, S.; Tuszynski, J.; Barclay, P.; Simon, C. Are there optical communication channels in the brain? Front. Biosci. 2018, 23, 1407-1421.
[37]
Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555-1567.
[38]
Kakazu, K.; Kim, Y. S. Quantization of electromagnetic fields in cavities and spontaneous emission. Phys. Rev. A 1994, 50, 1830-1839.
[39]
Keeling, J.; Eastham, P. R.; Szymanska, M. H.; Littlewood, P. B. Polariton condensation with localized excitons and propagating photons. Phys. Rev. Lett. 2004, 93, 226403.
[40]
Hepp, K.; Lieb, E. H. On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model. Ann. Phys. 1973, 76, 360-404.
[41]
Kulkarni, C. V. Lipid crystallization: From self-Assembly to hierarchical and biological ordering. Nanoscale 2012, 4, 5779-5791.
[42]
Ruocco, M. J.; Atkinson, D.; Small, D. M.; Skarjune, R. P.; Oldfield, E.; Shipley, G. G. X-ray diffraction and calorimetric study of anhydrous and hydrated N-(palmitoylgalactosylsphingosine cerebroside). Biochemistry 1981, 20, 5957-5966.
[43]
YashRoy, R. C. Determination of membrane lipid phase transition temperature from 13C-NMR intensities. J. Biochem. Biophys. Methods 1990, 20, 353-356.
[44]
Kulkarni, K.; Snyder, D. S.; McIntosh, T. J. Adhesion between cerebroside bilayers. Biochemistry 1999, 38, 15264-15271.
[45]
Chrast, R.; Saher, G.; Nave, K. A.; Verheijen M. H. G. Lipid metabolism in myelinating glial cells: Lessons from human inherited disorders and mouse models. J. Lipid Res. 2011, 52, 419-434.
[46]
Waxman, S. G.; Kocsis, J. D.; Stys, P. K. The Axon: Structure, Function and Pathophysiology; Oxford University Press: New York, 1995.
[47]
Siegel, G. J.; Albers, R. W.; Brady, S. T.; Price, D. L. Basic Neurochemistry: Molecular, Cellular and Medical Neurobiology, 7th ed; Canada: Elsevier, 2006.
[48]
De Felici, M.; Felici, R.; Ferrero, C.; Tartari, A.; Gambaccini, M.; Finet, S. Structural characterization of the human cerebral myelin sheath by small angle X-ray scattering. Phys. Med. Biol. 2008, 53, 5675-5688.
[49]
Yagi, N. A scanning SAXS/WAXS study of rat brain. J. Phys.: Conf. Ser. 2011, 272, 012009.
[50]
Marsh, D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. USA 2001, 98, 7777-7782.
[51]
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99-110.
Nano Research
Pages 38-44
Cite this article:
Song B, Shu Y. Cell vibron polariton resonantly self-confined in the myelin sheath of nerve. Nano Research, 2020, 13(1): 38-44. https://doi.org/10.1007/s12274-019-2568-4
Topics:

834

Views

18

Crossref

N/A

Web of Science

17

Scopus

10

CSCD

Altmetrics

Received: 15 October 2019
Accepted: 11 November 2019
Published: 16 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return