AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Graphitic carbon nitride with different dimensionalities for energy and environmental applications

Qiang Hao1Guohua Jia2Wei Wei1Ajayan Vinu3Yuan Wang4Hamidreza Arandiyan5Bing-Jie Ni1( )
Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
School of Chemistry, Faculty of Science, The University of New South Wales, Sydney, NSW 2052, Australia
Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
Show Author Information

Graphical Abstract

Abstract

As a metal-free semiconductor, graphitic carbon nitride (g-C3N4) has received extensive attention due to its high stability, nontoxicity, facile and low-cost synthesis, appropriate band gap in the visible spectral range and wide availability of resources. The dimensions of g-C3N4 can influence the regime of the confinement of electrons, and consequently, g-C3N4 with various dimensionalities shows different properties, making them available for many stimulating applications. Although there are some reviews focusing on the synthesis strategy and applications of g-C3N4, there is still a lack of comprehensive review that systemically summarises the synthesis and application of different dimensions of g-C3N4, which can provide an important theoretical and practical basis for the development of g-C3N4 with different dimensionalities and maximises their potential in diverse applications. By reviewing the latest progress of g-C3N4 studies, we aim to summarise the preparation of g-C3N4 with different dimensionalities using various structural engineering strategies, discuss the fundamental bottlenecks of currently existing methods and their solution strategies, and explore their applications in energy and environmental applications. Furthermore, it also puts forward the views on the future research direction of these unique materials.

References

[1]
Yu, Z. N.; Tetard, L.; Zhai, L.; Thomas, J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 2015, 8, 702-730.
[2]
Pokropivny, V. V.; Skorokhod, V. V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 2007, 27, 990-993.
[3]
Gu, W.; Yan, Y. H.; Pei, X. Y.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B: Chem. 2017, 250, 601-607.
[4]
Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.
[5]
Kroupa, D. M.; Hughes, B. K.; Miller, E. M.; Moore, D. T.; Anderson, N. C.; Chernomordik, B. D.; Nozik, A. J.; Beard, M. C. Synthesis and spectroscopy of silver-doped PbSe quantum dots. J. Am. Chem. Soc. 2017, 139, 10382-10394.
[6]
Hou, L. Z.; Mead, J. L.; Wang, S. L.; Huang, H. The kinetic frictional shear stress of ZnO nanowires on graphite and mica substrates. Appl. Surf. Sci. 2018, 465, 584-590.
[7]
Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820-1827.
[8]
Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271-276.
[9]
Ge, M. Z.; Li, Q. S.; Cao, C. Y.; Huang, J. Y.; Li, S. H.; Zhang, S. N.; Chen, Z.; Zhang, K. Q.; Al-Deyab, S. S.; Lai, Y. K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci. 2017, 4, 1600152.
[10]
Pei, L.; Lv, B. H.; Wang, S. B.; Yu, Z. T.; Yan, S. C.; Abe, R.; Zou, Z. G. Oriented growth of Sc-doped Ta3N5 nanorod photoanode achieving low-onset-potential for photoelectrochemical water oxidation. ACS Appl. Energy Mater. 2018, 1, 4150-4157.
[11]
Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B: Environ. 2017, 202, 683-694.
[12]
Hao, Q.; Chen, T.; Wang, R. T.; Feng, J. R.; Chen, D. M.; Yao, W. Q. A separation-free polyacrylamide/bentonite/graphitic carbon nitride hydrogel with excellent performance in water treatment. J. Clean. Prod. 2018, 197, 1222-1230.
[13]
Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[14]
Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766-4771.
[15]
Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227-238.
[16]
Erdoğan, I. Y.; Güllü, Ö. Optical and structural properties of CuO nanofilm: Its diode application. J. Alloys Compd. 2010, 492, 378-383.
[17]
Wang, X.; Tian, W.; Liao, M. Y.; Bando, Y.; Golberg, D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev. 2014, 43, 1400-1422.
[18]
Du, M. S.; Cui, L. S.; Cao, Y.; Bard, A. J. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc. 2015, 137, 7397-7403.
[19]
Hao, Q.; Niu, X. X.; Nie, C. S.; Hao, S. M.; Zou, W.; Ge, J. M.; Chen, D. M.; Yao, W. Q. A highly efficient g-C3N4/SiO2 heterojunction: The role of SiO2 in the enhancement of visible light photocatalytic activity. Phys. Chem. Chem. Phys. 2016, 18, 31410-31418.
[20]
Hao, Q.; Hao, S. M.; Niu, X. X.; Li, X.; Chen, D. M.; Ding, H. Enhanced photochemical oxidation ability of carbon nitride by π-π stacking interactions with graphene. Chin. J. Catal. 2017, 38, 278-286.
[21]
Ersan, G.; Apul, O. G.; Perreault, F.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets: A review. Water Res. 2017, 126, 385-398.
[22]
Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230-3238.
[23]
Park, J.; Mangeri, J.; Zhang, Q. T.; Yusuf, M. H.; Pateras, A.; Dawber, M.; Holt, M. V.; Heinonen, O. G.; Nakhmanson, S.; Evans, P. G. Domain alignment within ferroelectric/dielectric PbTiO3/SrTiO3 superlattice nanostructures. Nanoscale 2018, 10, 3262-3271.
[24]
Khayyami, A.; Karppinen, M. Reversible photoswitching function in atomic/molecular-layer-deposited ZnO:azobenzene superlattice thin films. Chem. Mater. 2018, 30, 5904-5911.
[25]
Tayari, V.; Hemsworth, N.; Fakih, I.; Favron, A.; Gaufrès, E.; Gervais, G.; Martel, R.; Szkopek, T. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 2015, 6, 7702.
[26]
Freundlich, A.; Alemu, A. Multi quantum well multijunction solar cell for space applications. Phys. Status Solidi (C) 2005, 2, 2978-2981.
[27]
Guo, F.; Creighton, M.; Chen, Y. T.; Hurt, R.; Külaots, I. Porous structures in stacked, crumpled and pillared graphene-based 3D materials. Carbon 2014, 66, 476-484.
[28]
Silveira, J. F. R. V.; Muniz, A. R. Diamond nanothread-based 2D and 3D materials: Diamond nanomeshes and nanofoams. Carbon 2018, 139, 789-800.
[29]
Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.
[30]
Wang, X. S.; Zhou, C.; Shi, R.; Liu, Q. Q.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Res. 2019, 12, 2385-2389.
[31]
Zhou, C.; Shi, R.; Shang, L.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Res. 2018, 11, 3462-3468.
[32]
Zhao, H.; Ding, X. L.; Zhang, B.; Li, Y. X.; Wang, C. Y. Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1-xS/Au/g-C3N4 photocatalysts under visible light. Sci. Bull. 2017, 62, 602-609.
[33]
Liebig, J. About some nitrogen compounds. Ann. Pharm. 1834, 10, 10.
[34]
Zhou, Z. X.; Zhang, Y. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Molecular engineering of polymeric carbon nitride: Advancing applications from photocatalysis to biosensing and more. Chem. Soc. Rev. 2018, 47, 2298-2321.
[35]
Franklin, E. C. The ammono carbonic acids. J. Am. Chem. Soc. 1922, 44, 486-509.
[36]
Liu, A. Y.; Cohen, M. L. Prediction of new low compressibility solids. Science 1989, 245, 841-842.
[37]
Teter, D. M.; Hemley, R. J. Low-compressibility carbon nitrides. Science 1996, 271, 53-55.
[38]
Zhang, J. S.; Wang, B.; Wang, X. C. Chemical synthesis and applications of graphitic carbon nitride. Acta Phys. Chim. Sin. 2013, 29, 1865-1876.
[39]
Molina, B.; Sansores, L. E. Electronic structure of six phases of C3N4: A theoretical approach. Mod. Phys. Lett. B 1999, 13, 193-201.
[40]
Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 2002, 26, 508-512.
[41]
Hao, Q.; Xie, C. A.; Huang, Y. M.; Chen, D. M.; Liu, Y. W.; Wei. W.; Ni, B. J. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles. Chin. J. Catal. 2020, 41, 249-258.
[42]
Li, Y. D.; Ruan, Z. H.; He, Y. Z.; Li, J. Z.; Li, K. Q.; Yang, Y. L.; Xia, D. B.; Lin, K. F.; Yuan, Y. Enhanced photocatalytic H2 evolution and phenol degradation over sulfur doped meso/macroporous g-C3N4 spheres with continuous channels. Int. J. Hydrogen Energy 2019, 44, 707-719.
[43]
Zhou, J.; Yang, Y.; Zhang, C. Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Commun. 2013, 49, 8605-8607.
[44]
Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693-721.
[45]
Wen, J. Q.; Xie, J.; Chen, X. B.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72-123.
[46]
Zhang, S.; Gu, P. C.; Ma, R.; Luo, C. T.; Wen, T.; Zhao, G. X.; Cheng, W. C.; Wang, X. K. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: A critical review. Catal. Today 2019, 335, 65-77.
[47]
Cao, S. W.; Yu, J. G. g-C3N4-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 2014, 5, 2101-2107.
[48]
Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150-2176.
[49]
Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 2019, 40, 289-319.
[50]
Nikokavoura, A.; Trapalis, C. Graphene and g-C3N4 based photocatalysts for NOx removal: A review. Appl. Surf. Sci. 2018, 430, 18-52.
[51]
Masih, D.; Ma, Y. Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B: Environ. 2017, 206, 556-588.
[52]
Zhang, C.; Li, Y.; Shuai, D. M.; Shen, Y.; Xiong, W.; Wang, L. Q. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere 2019, 214, 462-479.
[53]
Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.
[54]
Jiang, L. B.; Yuan, X. Z.; Pan, Y.; Liang, J.; Zeng, G. M.; Wu, Z. B.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: A reveiw. Appl. Catal. B: Environ. 2017, 217, 388-406.
[55]
Zhu, B. C.; Zhang, L. Y.; Cheng, B.; Yu, J. G. First-principle calculation study of tri-s-triazine-based g-C3N4: A review. Appl. Catal. B: Environ. 2018, 224, 983-999.
[56]
Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S. R. Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci.: Mater. Electron. 2018, 29, 1719-1747.
[57]
Baughman, R. H. Solid-state synthesis of large polymer single crystals. J. Polym. Sci.: Polym. Phys. Ed. 1974, 12, 1511-1535.
[58]
Wang, W. H.; Zhan, Y. J.; Wang, G. H. One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant. Chem. Commun. 2001, 8, 727-728.
[59]
Ganesh, I.; Srinivas, B.; Johnson, R.; Saha, B. P.; Mahajan, Y. R. Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J. Eur. Ceram. Soc. 2004, 24, 201-207.
[60]
Kouvetakis, J.; Todd, M.; Wilkens, B.; Bandari, A.; Cave, N. Novel synthetic routes to carbon-nitrogen thin films. Chem. Mater. 1994, 6, 811-814.
[61]
Khabashesku, V. N.; Zimmerman, J. L.; Margrave, J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater. 2000, 12, 3264-3270.
[62]
Zhang, Z. H.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; McMillan, P. F.; Wolf, G. H. High-pressure bulk synthesis of crystalline C6N9H3·HCl: A novel C3N4 graphitic derivative. J. Am. Chem. Soc. 2001, 123, 7788-7796.
[63]
Gu, Y. L.; Chen, L. Y.; Shi, L.; Ma, J. H.; Yang, Z. H.; Qian, Y. T. Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide. Carbon 2003, 41, 2674-2676.
[64]
Lu, X. F.; Gai, L. G.; Cui, D. L.; Wang, Q. L.; Zhao, X.; Tao, X. T. Synthesis and characterization of C3N4 nanowires and pseudocubic C3N4 polycrystalline nanoparticles. Mater. Lett. 2007, 61, 4255-4258.
[65]
Shaikh, A. V.; Mane, R. S.; Joo, O. S.; Han, S. H.; Pathan, H. M. Electrochemical deposition of cadmium selenide films and their properties: A review. J. Solid State Electrochem. 2017, 21, 2517-2530.
[66]
Li, J. D.; Zhang, X. L.; Raziq, F.; Wang, J. S.; Liu, C.; Liu, Y. D.; Sun, J. W.; Yan, R.; Qu, B. H.; Qin, C. L. et al. Improved photocatalytic activities of g-C3N4 nanosheets by effectively trapping holes with halogen-induced surface polarization and 2,4-dichlorophenol decomposition mechanism. Appl. Catal. B: Environ. 2017, 218, 60-67.
[67]
Ozel, T.; Zhang, B. A.; Gao, R. X.; Day, R. W.; Lieber, C. M.; Nocera, D. G. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett. 2017, 17, 4502-4507.
[68]
Fu, Q.; Cao, C. B.; Zhu, H. S. Preparation of carbon nitride films with high nitrogen content by electrodeposition from an organic solution. J. Mater. Sci. Lett. 1999, 18, 1485-1488.
[69]
Li, C.; Cao, C. B.; Zhu, H. S. Graphitic carbon nitride thin films deposited by electrodeposition. Mater. Lett. 2004, 58, 1903-1906.
[70]
Bai, X. J.; Li, J.; Cao, C. B. Synthesis of hollow carbon nitride microspheres by an electrodeposition method. Appl. Surf. Sci. 2010, 256, 2327-2331.
[71]
Chen, T.; Hao, Q.; Yang, W. J.; Xie, C. L.; Chen, D. M.; Ma, C.; Yao, W. Q.; Zhu, Y. F. A honeycomb multilevel structure Bi2O3 with highly efficient catalytic activity driven by bias voltage and oxygen defect. Appl. Catal. B: Environ. 2018, 237, 442-448.
[72]
Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394-12395.
[73]
Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} Facets. J. Am. Chem. Soc. 2009, 131, 4078-4083.
[74]
Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30-33.
[75]
Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault, S. C3N4: Dream or reality? Solvothermal synthesis as macroscopic samples of the C3N4 graphitic form. J. Mater. Sci. 2000, 35, 2547-2552.
[76]
Guo, Q. X.; Xie, Y.; Wang, X. J.; Lv, S. C.; Hou, T.; Liu, X. M. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures. Chem. Phys. Lett. 2003, 380, 84-87.
[77]
Guo, Q. X.; Xie, Y.; Wang, X. J.; Zhang, S. Y.; Hou, T.; Lv, S. C. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures. Chem. Commun. 2004, 26-27.
[78]
Bai, Y. J.; Lü, B.; Liu, Z. G.; Li, L.; Cui, D. L.; Xu, X. G.; Wang, Q. L. Solvothermal preparation of graphite-like C3N4 nanocrystals. J. Cryst. Growth 2003, 247, 505-508.
[79]
Li, J.; Cao, C. B.; Zhu, H. S. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes. Nanotechnology 2007, 18, 115605.
[80]
Gillan, E. G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 2000, 12, 3906-3912.
[81]
Lotsch, B. V.; Schnick, W. From triazines to heptazines: Novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem. Mater. 2006, 18, 1891-1900.
[82]
Li, Y. Y.; Xue, L. H.; Fan, L. F.; Yan, Y. W. The effect of citric acid to metal nitrates molar ratio on sol-gel combustion synthesis of nanocrystalline LaMnO3 powders. J. Alloys Compd. 2009, 478, 493-497.
[83]
Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171-15174.
[84]
Hong, J. H.; Xia, X. Y.; Wang, Y. S.; Xu, R. Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 2012, 22, 15006-15012.
[85]
Cui, Y. J.; Ding, Z. X.; Liu, P.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 2012, 14, 1455-1462.
[86]
Dong, F.; Wang, Z. Y.; Sun, Y. J.; Ho, W. K.; Zhang, H. D. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. J. Colloid Interface Sci. 2013, 401, 70-79.
[87]
Long, B. H.; Lin, J. L.; Wang, X. C. Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis. J. Mater. Chem. A 2014, 2, 2942-2951.
[88]
Lan, Z. A.; Zhang, G. G.; Wang, X. C. A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B Environ. 2016, 192, 116-125.
[89]
Shan, W. J.; Hu, Y.; Bai, Z. G.; Zheng, M. M.; Wei, C. H. In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl. Catal. B: Environ. 2016, 188, 1-12.
[90]
Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Zhai, J. F.; Sun, X. P. Preparation of photoluminescent carbon nitride dots from CCl4 and 1,2-ethylenediamine: A heat-treatment-based strategy. J. Mater. Chem. 2011, 21, 11726-11729.
[91]
Liu, S.; Wang, L.; Tian, J. Q.; Zhai, J. F.; Luo, Y. L.; Lu, W. B.; Sun, X. P. Acid-driven, microwave-assisted production of photoluminescent carbon nitride dots from N,N-dimethylformamide. RSC Adv. 2011, 1, 951-953.
[92]
Liu, S.; Tian, J. Q.; Wang, L.; Luo, Y. L.; Sun, X. P. A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv. 2012, 2, 411-413.
[93]
Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 2012, 22, 21832-21837.
[94]
Tang, Y. R.; Su, Y. Y.; Yang, N.; Zhang, L. C.; Lv, Y. Carbon nitride quantum dots: A novel chemiluminescence system for selective detection of free chlorine in water. Anal. Chem. 2014, 86, 4528-4535.
[95]
Li, H.; Shao, F. Q.; Huang, H.; Feng, J. J.; Wang, A. J. Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sens. Actuators B: Chem. 2016, 226, 506-511.
[96]
Cao, X. T.; Ma, J.; Lin, Y. P.; Yao, B. X.; Li, F. M.; Weng, W.; Lin, X. C. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions. Spectrochim. Acta A 2015, 151, 875-880.
[97]
Zhang, X. D.; Wang, H. X.; Wang, H.; Zhang, Q.; Xie, J. F.; Tian, Y. P.; Wang, J.; Xie, Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 2014, 26, 4438-4443.
[98]
Bai, X. J.; Yan, S. C.; Wang, J. J.; Wang, L.; Jiang, W. J.; Wu, S. L.; Sun, C. P.; Zhu, Y. F. A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material. J. Mater. Chem. A 2014, 2, 17521-17529.
[99]
Chen, X.; Liu, Q.; Wu, Q. L.; Du, P. W.; Zhu, J.; Dai, S. Y.; Yang, S. F. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv. Funct. Mater. 2016, 26, 1719-1728.
[100]
Wang, X. P.; Wang, L. X.; Zhao, F.; Hu, C. G.; Zhao, Y.; Zhang, Z. P.; Chen, S. L.; Shi, G. Q.; Qu, L. T. Monoatomic-thick graphitic carbon nitride dots on graphene sheets as an efficient catalyst in the oxygen reduction reaction. Nanoscale 2015, 7, 3035-3042.
[101]
Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed. 2016, 55, 2773-2777.
[102]
Fan, X. Q.; Feng, Y.; Su, Y. Y.; Zhang, L. C.; Lv, Y. A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing. RSC Adv. 2015, 5, 55158-55164.
[103]
Li, X. H.; Zhang, J. S.; Chen, X. F.; Fischer, A.; Thomas, A.; Antonietti, M.; Wang, X. C. Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion. Chem. Mater. 2011, 23, 4344-4348.
[104]
Zhang, J. S.; Guo, F. S.; Wang, X. C. An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures. Adv. Funct. Mater. 2013, 23, 3008-3014.
[105]
Liu, J.; Huang, J. H.; Zhou, H.; Antonietti, M. Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis. ACS Appl. Mater. Interfaces 2014, 6, 8434-8440.
[106]
Bai, X. J.; Wang, L.; Zong, R. L.; Zhu, Y. F. Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J. Phys. Chem. C 2013, 117, 9952-9961.
[107]
Xu, L.; Xia, J. X.; Wang, L. G.; Ji, H. Y.; Qian, J.; Xu, H.; Wang, K.; Li, H. M. Graphitic carbon nitride nanorods for photoelectrochemical sensing of trace copper(II) ions. Eur. J. Inorg. Chem. 2014, 23, 3665-3673.
[108]
Hu, S. Z.; Ma, L.; Xie, Y.; Li, F. Y.; Fan, Z. P.; Wang, F.; Wang, Q.; Wang, Y. J.; Kang, X. X.; Wu, G. Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton Trans. 2015, 44, 20889-20897.
[109]
Tang, Y. Q.; Yuan, M.; Jiang, B. J.; Xiao, Y. T.; Fu, Y.; Chen, S.; Deng, Z. P.; Pan, Q. J.; Tian, C. G.; Fu, H. G. Inorganic acid-derived hydrogen-bonded organic frameworks to form nitrogen-rich carbon nitrides for photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 21979-21985.
[110]
Li, H. J.; Qian, D. J.; Chen, M. Templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2015, 7, 25162-25170.
[111]
Suenaga, K.; Johansson, M. P.; Hellgren, N.; Broitman, E.; Wallenberg, L. R.; Colliex, C.; Sundgren, J. E.; Hultman, L. Carbon nitride nanotubulite-densely-packed and well-aligned tubular nanostructures. Chem. Phys. Lett. 1999, 300, 695-700.
[112]
Sung, S. L.; Tsai, S. H.; Tseng, C. H.; Chiang, F. K.; Liu, X. W.; Shih, H. C. Well-aligned carbon nitride nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys. Lett. 1999, 74, 197-199.
[113]
Tragl, S.; Gibson, K.; Glaser, J.; Duppel, V.; Simon, A.; Meyer, H. J. Template assisted formation of micro- and nanotubular carbon nitride materials. Solid State Commun. 2007, 141, 529-534.
[114]
Bian, S. W.; Ma, Z.; Song, W. G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C 2009, 113, 8668-8672.
[115]
Li, Y. G.; Zhang, J.; Wang, Q. S.; Jin, Y. X.; Huang, D. H.; Cui, Q. L.; Zou, G. T. Nitrogen-rich carbon nitride hollow vessels: Synthesis, characterization, and their properties. J. Phys. Chem. B 2010, 114, 9429-9434.
[116]
Cao, C. B.; Huang, F. L.; Cao, C. T.; Li, J.; Zhu, H. S. Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route. Chem. Mater. 2004, 16, 5213-5215.
[117]
Jordan, T.; Fechler, N.; Xu, J. S.; Brenner, T. J. K.; Antonietti, M.; Shalom, M. “Caffeine doping” of carbon/nitrogen-based organic catalysts: Caffeine as a supramolecular edge modifier for the synthesis of photoactive carbon nitride tubes. ChemCatChem 2015, 7, 2826-2830.
[118]
Guo, S. E.; Deng, Z. P.; Li, M. X.; Jiang, B. J.; Tian, C. G.; Pan, Q. J.; Fu, H. G. Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 1830-1834.
[119]
Jin, Z. Y.; Zhang, Q. T.; Yuan, S. S.; Ohno, T. Synthesis high specific surface area nanotube g-C3N4 with two-step condensation treatment of melamine to enhance photocatalysis properties. RSC Adv. 2015, 5, 4026-4029.
[120]
Tahir, M.; Cao, C. B.; Mahmood, N.;Butt, F. K.; Mahmood, A.; Idrees, F.;Hussain, S.; Tanveer, M.; Ali, Z.; Aslam, I. Multifunctional g-C3N4 nanofibers: A template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties. ACS Appl. Mater. Interfaces 2014, 6, 1258-1265.
[121]
Xie, M.; Wei, W.; Jiang, Z. F.; Xu, Y. G.; Xie, J. M. Carbon nitride nanowires/nanofibers: A novel template-free synthesis from a cyanuric chloride-melamine precursor towards enhanced adsorption and visible-light photocatalytic performance. Ceram. Int. 2016, 42, 4158-4170.
[122]
Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11433-11437.
[123]
Zhang, K.; Wang, L. Y.; Sheng, X. W.; Ma, M.; Jung, M. S.; Kim, W.; Lee, H.; Park, J. H. Tunable bandgap energy and promotion of H2O2 oxidation for overall water splitting from carbon nitride nanowire bundles. Adv. Energy Mater. 2016, 6, 1502352.
[124]
Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763-4770.
[125]
Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 2016, 6, 1601273.
[126]
Gholipour, M. R.; Béland, F.; Do, T. O. Post-calcined carbon nitride nanosheets as an efficient photocatalyst for hydrogen production under visible light irradiation. ACS Sustainable Chem. Eng. 2017, 5, 213-220.
[127]
Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18-21.
[128]
Lu, Y. T.; Chu, D. M.; Zhu, M. S.; Du, Y. K.; Yang, P. Exfoliated carbon nitride nanosheets decorated with NiS as an efficient noble-metal-free visible-light-driven photocatalyst for hydrogen evolution. Phys. Chem. Chem. Phys. 2015, 17, 17355-17361.
[129]
Wang, X.; Hong, M. Z.; Zhang, F. W.; Zhuang, Z. Y.; Yu, Y. Recyclable nanoscale zero valent iron doped g-C3N4/MoS2 for efficient photocatalysis of RhB and Cr(VI) driven by visible light. ACS Sustainable Chem. Eng. 2016, 4, 4055-4063.
[130]
Bao, N.; Hu, X. D.; Zhang, Q. Z.; Miao, X. H.; Jie, X. Y.; Zhou, S. Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl. Surf. Sci. 2017, 403, 682-690.
[131]
Fang, L. J.; Li, Y. H.; Liu, P. F.; Wang, D. P.; Zeng, H. D.; Wang, X. L.; Yang, H. G. Facile fabrication of large-aspect-ratio g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2017, 5, 2039-2043.
[132]
Xu, J.; Zhang, L. W.; Shi, R.; Zhu, Y. F. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 2013, 1, 14766-14772.
[133]
Zhao, H. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M.; Wang, H. Atomic single layer graphitic-C3N4: Fabrication and its high photocatalytic performance under visible light irradiation. RSC Adv. 2014, 4, 624-628.
[134]
Zhao, H. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, Y. B.; Zhao, H. M.; Wang, H. Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B: Environ. 2014, 152-153, 46-50.
[135]
Dang, X. M.; Zhang, X. F.; Zhang, W. Q.; Dong, X. L.; Wang, G. W.; Ma, C.; Zhang, X. X.; Ma, H. C.; Xue, M. Ultra-thin C3N4 nanosheets for rapid charge transfer in the core-shell heterojunction of α-sulfur@C3N4 for superior metal-free photocatalysis under visible light. RSC Adv. 2015, 5, 15052-15058.
[136]
Bojdys, M. J.; Müller, J. O.; Antonietti, M.; Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem.—Eur. J. 2008, 14, 8177-8182.
[137]
Cheng, N. Y.; Jiang, P.; Liu, Q.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. Graphitic carbon nitride nanosheets: One-step, high-yield synthesis and application for Cu2+ detection. Analyst 2014, 139, 5065-5068.
[138]
Liu, G. G.; Wang, T.; Zhang, H. B.; Meng, X. G.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. H. Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visible-light irradiation. Angew. Chem., Int. Ed. 2015, 54, 13561-13565.
[139]
Lu, X. L.; Xu, K.; Chen, P. Z.; Jia, K. C.; Liu, S.; Wu, C. Z. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2014, 2, 18924-18928.
[140]
Dong, G. H.; Jacobs, D. L.; Zang, L.; Wang, C. Y. Carbon vacancy regulated photoreduction of NO to N2 over ultrathin g-C3N4 nanosheets. Appl. Catal. B: Environ. 2017, 218, 515-524.
[141]
Yin, Y.; Han, J. C.; Zhang, X. H.; Zhang, Y. M.; Zhou, J. G.; Muir, D.; Sutarto, R.; Zhang, Z. H.; Liu, S. W.; Song, B. Facile synthesis of few-layer-thick carbon nitride nanosheets by liquid ammonia-assisted lithiation method and their photocatalytic redox properties. RSC Adv. 2014, 4, 32690-32697.
[142]
Yu, Y. Z.; Zhou, Q.; Wang, J. G. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem. Commun. 2016, 52, 3396-3399.
[143]
Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417, 813-821.
[144]
Dong, G. H.; Zhang, L. Z. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater. Chem. 2012, 22, 1160-1166.
[145]
Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634-4639.
[146]
Wu, X. Y.; Li, S. M.; Wang, B.; Liu, J. H.; Yu, M. From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C3N4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. Micropor. Mesopor. Mater. 2017, 240, 216-226.
[147]
Tian, N.; Zhang, Y. H.; Li, X. W.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G. I. N.; Zhang, T. R.; Huang, H. W. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 2017, 38, 72-81.
[148]
Wang, Y. G.; Xia, Q. N.; Bai, X.; Ge, Z. G.; Yang, Q.; Yin, C. C.; Kang, S. F.; Dong, M. D.; Li, X. Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Appl. Catal. B: Environ. 2018, 239, 196-203.
[149]
Zhou, Y. J.; Li, J. Z.; Liu, C. Y.; Huo, P. W.; Wang, H. Q. Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Appl. Surf. Sci. 2018, 458, 586-596.
[150]
Chen, Z. F.; Lu, S. C.; Wu, Q. L.; He, F.; Zhao, N. Q.; He, C. N.; Shi, C. S. Salt-assisted synthesis of 3D open porous g-C3N4 decorated with cyano groups for photocatalytic hydrogen evolution. Nanoscale 2018, 10, 3008-3013.
[151]
Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139.
[152]
Zhang, S. B.; Li, M.; Qiu, W. J.; Wei, Y.; Zhang, G. F.; Han, J. Y.; Wang, H.; Liu, X. Super small polymeric carbon nitride nanospheres with core-shell structure for photocatalysis. ChemistrySelect 2017, 2, 10580-10585.
[153]
Chen, J. H.; Shi, W. B.; Zhang, X. Y.; Arandiyan, H.; Li, D. F.; Li, J. H. Roles of Li+ and Zr4+ Cations in the catalytic performances of Co1-xMxCr2O4 (M = Li, Zr; x = 0-0.2) for Methane Combustion. Environ. Sci. Technol. 2011, 45, 8491-8497.
[154]
Cai, J. B.; Wu, X. Q.; Li, Y. H.; Lin, Y.; Yang, H.; Li, S. X. Noble metal sandwich-like TiO2@Pt@C3N4 hollow spheres enhance photocatalytic performance. J. Colloid Interface Sci. 2018, 514, 791-800.
[155]
Jun, Y. S.; Lee, E. Z.; Wang, X. C.; Hong, W. H.; Stucky, G. D.; Thomas, A. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661-3667.
[156]
Yang, J. J.; Chen, D. M.; Zhu, Y.; Zhang, Y. M.; Zhu, Y. F. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl. Catal. B: Environ. 2017, 205, 228-237.
[157]
Tong, Z. W.; Yang, D.; Shi, J. F.; Nan, Y. H.; Sun, Y. Y.; Jiang, Z. Y. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance. ACS Appl. Mater. Interfaces 2015, 7, 25693-25701.
[158]
Wang, X.; Liang, Y. H.; An, W. J.; Hu, J. S.; Zhu, Y. F.; Cui, W. Q. Removal of chromium (VI) by a self-regenerating and metal free g-C3N4/graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light. Appl. Catal. B: Environ. 2017, 219, 53-62.
[159]
Liang, Y. H.; Wang, X.; An, W. J.; Li, Y.; Hu, J. S.; Cui, W. Q. A g-C3N4@ppy-rGO 3D structure hydrogel for efficient photocatalysis. Appl. Surf. Sci. 2019, 466, 666-672.
[160]
Zhang, M.; Luo, W. J.; Wei, Z.; Jiang, W. J.; Liu, D.; Zhu, Y. F. Separation free C3N4/SiO2 hybrid hydrogels as high active photocatalysts for TOC removal. Appl. Catal. B: Environ. 2016, 194, 105-110.
[161]
Zhang, M.; Jiang, W. J.; Liu, D.; Wang, J.; Liu, Y. F.; Zhu, Y. Y.; Zhu, Y. F. Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl. Catal. B: Environ. 2016, 183, 263-268.
[162]
Yan, J.; Rodrigues, M. T. F.; Song, Z. L.; Li, H. P.; Xu, H.; Liu, H.; Wu, J. J.; Xu, Y. G.; Song, Y. H.; Liu, Y. et al. Reversible formation of g-C3N4 3D hydrogels through ionic liquid activation: Gelation behavior and room-temperature gas-sensing properties. Adv. Funct. Mater. 2017, 27, 1700653.
[163]
Zhang, Y. Y.; Zhou, Z. X.; Shen, Y. F.; Zhou, Q.; Wang, J. H.; Liu, A. R.; Liu, S. Q.; Zhang, Y. J. Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes absorption and regeneration. ACS Nano 2016, 10, 9036-9043.
[164]
Dong, F.; Zhao, Z.; Sun, Y.; Zhang, Y.; Yan, S.; Wu, Z. An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ. Sci. Technol. 2015, 49, 12432-12440.
[165]
Xu, Y. L.; Niu, X. Y.; Zhang, H. J.; Xu, L. F.; Zhao, S. G.; Chen, H. L.; Chen, X. G. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor. J. Agric. Food Chem. 2015, 63, 1747-1755.
[166]
Lin, X.; Xu, D.; Zheng, J.; Song, M. S.; Che, G. B.; Wang, Y. S.; Yang, Y.; Liu, C.; Zhao, L. N.; Chang, L. M. Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nanoheterostructures with enhanced visible-light photocatalytic activity. J. Alloys Compd. 2016, 688, 891-898.
[167]
Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Han, J. C.; Han, Z. B.; Zhang, Z. H.; Wu, Q.; Song, B. One-pot evaporation-condensation strategy for green synthesis of carbon nitride quantum dots: An efficient fluorescent probe for ion detection and bioimaging. Mater. Chem. Phys. 2017, 194, 293-301.
[168]
Sun, B.; Lu, N.; Su, Y.; Yu, H. T.; Meng, X. Y.; Gao, Z. M. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance. Appl. Surf. Sci. 2017, 394, 479-487.
[169]
Su, J. Y.; Zhu, L.; Chen, G. H. Ultrasmall graphitic carbon nitride quantum dots decorated self-organized TiO2 nanotube arrays with highly efficient photoelectrochemical activity. Appl. Catal. B: Environ. 2016, 186, 127-135.
[170]
Zhang, H.; Guo, L. H.; Zhao, L. X.; Wan, B.; Yang, Y. Switching oxygen reduction pathway by exfoliating graphitic carbon nitride for enhanced photocatalytic phenol degradation. J. Phys. Chem. Lett. 2015, 6, 958-963.
[171]
Chen, W.; Duan, G. R.; Liu, T. Y.; Chen, S. M.; Liu, X. H. Fabrication of Bi2MoO6 nanoplates hybridized with g-C3N4 nanosheets as highly efficient visible light responsive heterojunction photocatalysts for rhodamine B degradation. Mater. Sci. Semicond. Process 2015, 35, 45-54.
[172]
Li, Y.; Liu, X. M.; Tan, L.; Cui, Z. D.; Yang, X. J.; Zheng, Y. F.; Yeung, K. W. K.; Chu, P. K.; Wu, S. L. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv. Funct. Mater. 2018, 28, 1800299.
[173]
Fan, Y. D.; Zhou, J.; Zhang, J.; Lou, Y. Q.; Huang, Z. W.; Ye, Y.; Jia, L.; Tang, B. Photocatalysis and self-cleaning from g-C3N4 coated cotton fabrics under sunlight irradiation. Chem. Phys. Lett. 2018, 699, 146-154.
[174]
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595-5599.
[175]
Shiravand, G.; Badiei, A.; Ziarani, G. M. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuator B: Chem. 2017, 242, 244-252.
[176]
Wang, K.; Li, Q.; Liu, B. S.; Cheng, B.; Ho, W.; Yu, J. G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B: Environ. 2015, 176-177, 44-52.
[177]
Li, M.; Zhang, S. B.; Liu, X.; Han, J. Y.; Zhu, X. L.; Ge, Q. F.; Wang, H. Polydopamine and barbituric acid co-modified carbon nitride nanospheres for highly active and selective photocatalytic CO2 reduction. Eur. J. Inorg. Chem. 2019, 15, 2058-2064.
[178]
Zhang, Y. H.; Pan, Q. W.; Chai, G. Q.; Liang, M. R.; Dong, G. P.; Zhang, Q. Y.; Qiu, J. R. Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 2013, 3, 1943.
[179]
Das, D.; Shinde, S. L.; Nanda, K. K. Temperature-dependent photoluminescence of g-C3N4: Implication for temperature sensing. ACS Appl. Mater. Interfaces 2016, 8, 2181-2186.
[180]
Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018.
[181]
Peng, M. S.; Wang, Y.; Fu, Q.; Sun, F. F.; Na, N.; Ouyang, J. Melanosome-targeting near-infrared fluorescent probe with large stokes shift for in situ quantification of tyrosinase activity and assessing drug effects on differently invasive melanoma cells. Anal. Chem. 2018, 90, 6206-6213.
[182]
Cui, Q. L.; Xu, J. S.; Wang, X. Y.; Li, L. D.; Antonietti, M.; Shalom, M. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew. Chem., Int. Ed. 2016, 55, 3672-3676.
[183]
Su, J. Y.; Zhu, L.; Geng, P.; Chen, G. H. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light. J. Hazard. Mater. 2016, 316, 159-168.
[184]
Sun, S. M.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard III, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201-209.
Nano Research
Pages 18-37
Cite this article:
Hao Q, Jia G, Wei W, et al. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Research, 2020, 13(1): 18-37. https://doi.org/10.1007/s12274-019-2589-z
Topics:

1539

Views

225

Crossref

N/A

Web of Science

223

Scopus

18

CSCD

Altmetrics

Received: 09 October 2019
Revised: 20 November 2019
Accepted: 28 November 2019
Published: 18 December 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return