Sort:
Open Access Review Article Issue
Recent advances in self-healing hydrogel composites for flexible wearable electronic devices
Nano Research Energy 2024, 3: e9120123
Published: 17 May 2024
Abstract PDF (25.9 MB) Collect
Downloads:356

Flexible electronic devices with mechanical properties like the soft tissues of human organs have great potential for the next generation of wearable and implantable electronic devices. Self-healing hydrogel composites typically have high tensile strength, high electrical conductivity and damage repair properties and have wide applications in flexible electronics, such as human-computer interaction, health detection and soft robots. Various self-healing hydrogel composites have been developed to produce new stretchable conductive materials with satisfactory mechanical and self-healing properties. This paper presents the fabrication of self-healing hydrogel composites and their application in flexible electronic devices. Firstly, the repair mechanism of physically cross-linked and chemically cross-linked self-healing hydrogel composites is presented. Secondly, self-healing double network hydrogels, self-healing nanocomposite hydrogels and double crosslinked self-healing hydrogel composites and their applications in flexible sensors, energy harvesting devices, energy storage devices and optical devices are presented and discussed. Finally, the challenges and prospects of self-healing hydrogel composites in flexible electronic devices in the future are presented.

Review Article Issue
Boride-based electrocatalysts: Emerging candidates for water splitting
Nano Research 2020, 13(2): 293-314
Published: 02 January 2020
Abstract PDF (52.8 MB) Collect
Downloads:40

Electrocatalytic water splitting (EWS) is a promising route to produce hydrogen in a sustainable and environment-benign manner. To realize the large-scale hydrogen production, it is paramount to develop desirable electrocatalysts with engineered structure, high catalytic activity, facile accessibility, low cost, and good durability. Of late, boride-based materials, especially transition-metal borides (TMBs), are emerging as promising candidates for the EWS process. However, so far, little attempt has been made to provide a comprehensive summary on these findings. Herein, this review provides the up-to-date status on upgrading the catalytic performance of TMB-based nanomaterials by regulating the internal and external characteristics. The conventional synthetic techniques are first presented for the preparation of TMB-based catalysts. Afterwards, the advanced strategies are summarized to enhance the catalytic performance of TMBs, including morphology control, component regulation, phase engineering, surface oxidation and hybridization. Then, the design principles of TMB-based electrocatalysts for high-performance EWS are outlined. Lastly, the current challenges and future directions in the development of TMB-based materials are proposed. This review article is expected to envisage insights into the TMBs-based water splitting and to provide strategies for design of the next-generation TMB-based electrocatalysts.

Review Article Issue
Graphitic carbon nitride with different dimensionalities for energy and environmental applications
Nano Research 2020, 13(1): 18-37
Published: 18 December 2019
Abstract PDF (49.2 MB) Collect
Downloads:81

As a metal-free semiconductor, graphitic carbon nitride (g-C3N4) has received extensive attention due to its high stability, nontoxicity, facile and low-cost synthesis, appropriate band gap in the visible spectral range and wide availability of resources. The dimensions of g-C3N4 can influence the regime of the confinement of electrons, and consequently, g-C3N4 with various dimensionalities shows different properties, making them available for many stimulating applications. Although there are some reviews focusing on the synthesis strategy and applications of g-C3N4, there is still a lack of comprehensive review that systemically summarises the synthesis and application of different dimensions of g-C3N4, which can provide an important theoretical and practical basis for the development of g-C3N4 with different dimensionalities and maximises their potential in diverse applications. By reviewing the latest progress of g-C3N4 studies, we aim to summarise the preparation of g-C3N4 with different dimensionalities using various structural engineering strategies, discuss the fundamental bottlenecks of currently existing methods and their solution strategies, and explore their applications in energy and environmental applications. Furthermore, it also puts forward the views on the future research direction of these unique materials.

Total 3