AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Ternary Pt/Re/SnO2/C catalyst for EOR: Electrocatalytic activity and durability enhancement

Elżbieta Drzymała1( )Grzegorz Gruzeł1Joanna Depciuch1Miroslawa Pawlyta2Mikołaj Donten3Magdalena Parlinska-Wojtan1
Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice 44-100, Poland
Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
Show Author Information

Graphical Abstract

Abstract

Carbon-supported Pt/C, Pt/Re/C, Pt/SnO2/C and Pt/Re/SnO2/C, with 20 wt.% overall metal loading were prepared and their electrochemical activity towards ethanol oxidation reaction (EOR) was investigated. Transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS) revealed, that indeed binary and ternary combinations of the designed nanoparticles (NPs) were formed and successfully uniformly deposited on a carbon support. Fourier transform infrared spectroscopy (FTIR) allowed to assess the chemical composition of the nanocatalysts and X-ray diffraction (XRD) allowed to determine the catalyst structure. Potentiodynamic and chronoamperometric measurements were used to establish its catalytic activity and stability. The influence of Re addition on the electrochemical activity towards ethanol oxidation reaction (EOR) was verified. Indeed, the addition of Re to the binary Pt/SnO2/C catalyst leads to the formation of ternary Pt/Re/SnO2/C with physical contact between the individual NPs, enhancing the EOR. Furthermore, the onset potential of the synthesized ternary catalyst is shifted to more negative potentials and the current densities and specific activity are nearly 11 and 5 times higher, respectively, than for commercial Pt catalyst. Additionally ternary Pt/Re/SnO2/C catalyst retained 96% of its electrochemical surface area.

Electronic Supplementary Material

Download File(s)
12274_2020_2704_MOESM1_ESM.pdf (1.7 MB)

References

[1]
Jiang, K. Z.; Bu, L. Z.; Wang, P. T.; Guo, S. J.; Huang, X. Q. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation. ACS Appl. Mater. Interfaces 2015, 7, 15061-15067.
[2]
Erini, N.; Rudi, S.; Beermann, V.; Krause, P.; Yang, R. Z.; Huang, Y. H.; Strasser, P. Exceptional activity of a Pt-Rh-Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2015, 2, 903-908.
[3]
Yang, G. X.; Frenkel, A. I.; Su, D.; Teng, X. W. Enhanced electrokinetics of C-C bond splitting during ethanol oxidation by using a Pt/Rh/Sn catalyst with a partially oxidized Pt and Rh core and a SnO2 shell. ChemCatChem 2016, 8, 2876-2880.
[4]
Comignani, V.; Sieben, J. M.; Sanchez, M. D.; Duarte, M. M. E. Influence of carbon support properties on the electrocatalytic activity of PtRuCu nanoparticles for methanol and ethanol oxidation. Int. J. Hydrogen Energy 2017, 42, 24785-24796.
[5]
Spinacé, E. V.; Linardi, M.; Neto, A. O. Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt-Sn electrocatalysts. Electrochem. Commun. 2005, 7, 365-369.
[6]
Spinacé, E. V.; Dias, R. R.; Brandalise, M.; Linardi, M.; Neto, A. O. Electro-oxidation of ethanol using PtSnRh/C electrocatalysts prepared by an alcohol-reduction process. Ionics 2010, 16, 91-95.
[7]
Yang, G. X.; Namin, L. M.; Aaron Deskins, N.; Teng, X. W. Influence of *OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol. J. Catal. 2017, 353, 335-348.
[8]
Silva, J. C. M.; Parreira, L. S.; De Souza, R. F. B.; Calegaro, M. L.; Spinacé, E. V.; Neto, A. O.; Santos, M. C. PtSn/C alloyed and non-alloyed materials: Differences in the ethanol electro-oxidation reaction pathways. Appl. Catal. B: Environ. 2011, 110, 141-147.
[9]
Antolini, E.; Colmati, F.; Gonzalez, E. R. Ethanol oxidation on carbon supported (PtSn)alloy/SnO2 and (PtSnPd)alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: Effect of the alloy phase characteristics. J. Power Sources 2009, 193, 555-561.
[10]
Perez, J.; Paganin, V. A.; Antolini, E. Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell. J. Electroanal. Chem. 2011, 654, 108-115.
[11]
Zhou, W. P.; An, W.; Su, D.; Palomino, R.; Liu, P.; White, M. G.; Adzic, R. R. Electrooxidation of methanol at SnOx-Pt interface: A tunable activity of tin oxide nanoparticles. J. Phys. Chem. Lett. 2012, 3, 3286-3290.
[12]
Colmati, F.; Antolini, E.; Gonzalez, E. R. Preparation, structural characterization and activity for ethanol oxidation of carbon supported ternary Pt-Sn-Rh catalysts. J. Alloys Compd. 2008, 456, 264-270.
[13]
Antolini, E.; Colmati, F.; Gonzalez, E. R. Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt-Sn alloy catalysts. Electrochem. Commun. 2007, 9, 398-404.
[14]
Jiang, L. H.; Sun, G. Q.; Sun, S. G.; Liu, J. G.; Tang, S. H.; Li, H. Q.; Zhou, B.; Xin, Q. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation. Electrochim. Acta 2005, 50, 5384-5389.
[15]
Antolini, E. Catalysts for direct ethanol fuel cells. J. Power Sources 2007, 170, 1-12.
[16]
Antolini, E.; Gonzalez, E. R. Effect of synthesis method and structural characteristics of Pt-Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catal. Today 2011, 160, 28-38.
[17]
Li, M.; Kowal, A.; Sasaki, K.; Marinkovic, N.; Su, D.; Korach, E.; Liu, P.; Adzic, R. R. Ethanol oxidation on the ternary Pt-Rh-SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios. Electrochim. Acta 2010, 55, 4331-4338.
[18]
Du, W. X.; Yang, G. X.; Wong, E.; Deskins, N. A.; Frenkel, A. I.; Su, D.; Teng, X. W. Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol. J. Am. Chem. Soc. 2014, 136, 10862-10865.
[19]
Wang, C.; Jusys, Z.; Behm, R. J. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: A quantitative DEMS study. J. Power Sources 2006, 154, 351-359.
[20]
Li, M.; Cullen, D. A.; Sasaki, K.; Marinkovic, N. S.; More, K.; Adzic, R. R. Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: Making Ir capable of splitting C-C bond. J. Am. Chem. Soc. 2013, 135, 132-141.
[21]
Li, M.; Zhou, W. P.; Marinkovic, N. S.; Sasaki, K.; Adzic, R. R. The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochim. Acta 2013, 104, 454-461.
[22]
Kowal, A.; Li, M.; Shao, M.; Sasaki, K.; Vukmirovic, M. B.; Zhang, J.; Marinkovic, N. S.; Liu, P.; Frenkel, A. I.; Adzic, R. R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 2009, 8, 325-330.
[23]
Higuchi, E.; Takase, T.; Chiku, M.; Inoue, H. Preparation of ternary Pt/Rh/SnO2 anode catalysts for use in direct ethanol fuel cells and their electrocatalytic activity for ethanol oxidation reaction. J. Power Sources 2014, 263, 280-287.
[24]
Tayal, J.; Rawat, B.; Basu, S. Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int. J. Hydrogen Energy 2012, 37, 4597-4605.
[25]
Simonetti, D. A.; Kunkes, E. L.; Dumesic, J. A. Gas-phase conversion of glycerol to synthesis gas over carbon-supported platinum and platinum-rhenium catalysts. J. Catal. 2007, 247, 298-306.
[26]
Ciftci, A.; Ligthart, D. A. J. M.; Sen, A. O.; Van Hoof, A. J. F.; Friedrich, H.; Hensen, E. J. M. Pt-Re synergy in aqueous-phase reforming of glycerol and the water-gas shift reaction. J. Catal. 2014, 311, 88-101.
[27]
Ramstad, A.; Strisland, F.; Raaen, S.; Borg, A.; Berg, C. CO and O2 adsorption on the Re/Pt(111) surface studied by photoemission and thermal desorption. Surf. Sci. 1999, 440, 290-300.
[28]
Duke, A. S.; Xie, K. M.; Monnier, J. R.; Chen, D. A. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions. Surf. Sci. 2017, 657, 35-43.
[29]
Infoplease: Math & Science, Chemistry, Interactive Periodic Table[Online]. https://www.infoplease.com/transition-metals/rhenium & https://www.infoplease.com/transition-metals/platinum (accessed Feb 20, 2020).
[30]
Erini, N.; Loukrakpam, R.; Petkov, V.; Baranova, E. A.; Yang, R. Z.; Teschner, D.; Huang, Y. H.; Brankovic, S. R.; Strasser, P. Ethanol electro-oxidation on ternary platinum-rhodium-tin nanocatalysts: Insights in the atomic 3D structure of the active catalytic phase. ACS Catal. 2014, 4, 1859-1867.
[31]
Alnot, M.; Gorodetskii, V.; Cassuto, A.; Ehrhardt, J. J. Auger electron spectroscopy, X-ray photoelectron spectroscopy, work function measurements and photoemission of adsorbed xenon on thin films of Pt-Re(111) alloys. Thin Solid Films 1987, 151, 251-262.
[32]
Duke, A. S.; Galhenage, R. P.; Tenney, S. A.; Sutter, P.; Chen, D. A. In situ studies of carbon monoxide oxidation on platinum and platinum-rhenium alloy surfaces. J. Phys. Chem. C 2015, 119, 381-391.
[33]
Drzymała, E.; Gruzeł, G.; Pajor-Świerzy, A.; Depciuch, J.; Socha, R.; Kowal, A.; Warszyński, P.; Parlinska-Wojtan, M. Design and assembly of ternary Pt/Re/SnO2 NPs by controlling the zeta potential of individual Pt, Re, and SnO2 NPs. J. Nanopart. Res. 2018, 20, 144.
[34]
Roth, C.; Papworth, A. J.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J. Electroanal. Chem. 2005, 581, 79-85.
[35]
Parlinska-Wojtan, M.; Drzymała, E.; Gruzeł, G.; Depciuch, J.; Donten, M.; Kowal, A. Ternary Pt/Re/SnO2 nanoparticles for ethanol oxidation reaction: Understanding the correlation between the synthesis route and the obtained material. Appl. Catal. A: Gen. 2019, 570, 319-328.
[36]
De Souza, E. A.; Giz, M. J.; Camara, G. A.; Antolini, E.; Passos, R. R. Ethanol electro-oxidation on partially alloyed Pt-Sn-Rh/C catalysts. Electrochim. Acta 2014, 147, 483-489.
[37]
Sivaiah, K.; B. Hemalatha Rudramadevi, B.; Buddhudu, S.; Bhaskar Kumar, G.; Varadarajulu, A. Structural, thermal and optical properties of Cu2+ and Co2+: PVP polymer films. Indian J. Pure Appl. Phys. 2010, 48, 658-662.
[38]
Krishnan, K.; Krishnan, R. S. Raman and infrared spectra of ethylene glycol. Proc. Indian Acad. Sci. - Sect. A 1966, 64, 111.
[39]
Plyler, E. K. Infrared spectra of methanol, ethanol, and n-propanol. J. Res. Natl. Bur. Stand. 1952, 48, 281-286.
[40]
Mariammal, R. N.; Rajamanickam, N.; Ramachandran, K. Synthesis and characterization of undoped and Co-doped SnO2 nanoparticles. J. Nano-Electron. Phys. 2011, 3, 92-100.
[41]
Chen, D. L.; Gao, L. A. Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J. Colloid Interface Sci. 2004, 279, 137-142.
[42]
Krishnakumar, T.; Pinna, N.; Kumari, K. P.; Perumal, K.; Jayaprakash, R. Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett. 2008, 62, 3437-3440.
[43]
Solymosi, F.; Block, J. H. Catalytic decomposition of HClO4 vapor over CuO by field ion mass spectrometry. J. Catal. 1976, 42, 173-176.
[44]
Karelin, A. I.; Grigorovich, Z. I. Vibrational spectra of perchloric acid—II. Modifications and phase transitions of solid HClO4 and DClO4. Spectrochim. Acta Part A: Mol. Spectrosc. 1976, 32, 851-857.
[45]
Dou, M. L.; Hou, M.; Liang, D.; Lu, W. T.; Shao, Z. G.; Yi, B. L. SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells. Electrochim. Acta 2013, 92, 468-473.
[46]
Lim, D. H.; Choi, D. H.; Lee, W. D.; Lee, H. I. A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Appl. Catal. B: Environ. 2009, 89, 484-493.
[47]
Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T. J. Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J. Electrochem. Soc. 2014, 161, H121-H128.
[48]
Li, H. Q.; Sun, G. Q.; Cao, L.; Jiang, L. H.; Xin, Q. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim. Acta 2007, 52, 6622-6629.
[49]
De Lima, R. B.; Paganin, V.; Iwasita, T.; Vielstich, W. On the electrocatalysis of ethylene glycol oxidation. Electrochim. Acta 2003, 49, 85-91.
[50]
Kowal, A.; Gojković, S. L.; Lee, K. S.; Olszewski, P.; Sung, Y. E. Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt-Rh, Pt-SnO2 and Pt-Rh-SnO2 nanoclusters. Electrochem. Commun. 2009, 11, 724-727.
[51]
Luo, J. H.; Alexander, B.; Wagner, T. R.; Maggard, P. A. Synthesis and characterization of ReO4-containing microporous and open framework structures. Inorg. Chem. 2004, 43, 5537-5542.
[52]
Gong, Y.; Zhou, M. F. Infrared spectra of transition-metal dioxide anions: MO2- (M = Rh, Ir, Pt, Au) in solid argon. J. Phys. Chem. A 2009, 113, 4990-4995.
[53]
Lima, F. H. B.; Gonzalez, E. R. Ethanol electro-oxidation on carbon-supported Pt-Ru, Pt-Rh and Pt-Ru-Rh nanoparticles. Electrochim. Acta 2008, 53, 2963-2971.
[54]
Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G. Q.; Behm, R. J. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim. Acta 2007, 53, 377-389.
[55]
St. John, S.; Boolchand, P.; Angelopoulos, A. P. Improved electrocatalytic ethanol oxidation activity in acidic and alkaline electrolytes using size-controlled Pt-Sn nanoparticles. Langmuir 2013, 29, 16150-16159.
[56]
Vigier, F.; Coutanceau, C.; Hahn, F.; Belgsir, E. M.; Lamy, C. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: Electrochemical and in situ IR reflectance spectroscopy studies. J. Electroanal. Chem. 2004, 563, 81-89.
[57]
Mai, P. T.; Haze, A.; Chiku, M.; Higuchi, E.; Inoue, H. Ethanol oxidation reaction on tandem Pt/Rh/SnOx catalyst. Catalysts 2017, 7, 246.
[58]
Davenport, W. H.; Kollonitsch, V.; Klein, C. H. Advances in rhenium catalysts. Ind. Eng. Chem. 1968, 60, 10-19.
[59]
Kirilin, A. V.; Tokarev, A. V.; Manyar, H.; Hardacre, C.; Salmi, T.; Mikkola, J. P.; Murzin, D. Y. Aqueous phase reforming of xylitol over Pt-Re bimetallic catalyst: Effect of the Re addition. Catal. Today 2014, 223, 97-107.
[60]
Raciti, D.; Kubal, J.; Ma, C.; Barclay, M.; Gonzalez, M.; Chi, M. F.; Greeley, J.; More, K. L.; Wang, C. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy 2016, 20, 202-211.
[61]
Goel, J.; Basu, S. Pt-Re-Sn as metal catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Energy Procedia 2012, 28, 66-77.
[62]
Zhang, L.; Karim, A. M.; Engelhard, M. H.; Wei, Z. H.; King, D. L.; Wang, Y. Correlation of Pt-Re surface properties with reaction pathways for the aqueous-phase reforming of glycerol. J. Catal. 2012, 287, 37-43.
[63]
Gharibi, H.; Sadeghi, S.; Golmohammadi, F. Electrooxidation of Ethanol on highly active and stable carbon supported PtSnO2 and its application in passive direct ethanol fuel cell: Effect of tin oxide synthesis method. Electrochim. Acta 2016, 190, 1100-1112.
[64]
Colmati, F.; Antolini, E.; Gonzalez, E. R. Effect of temperature on the mechanism of ethanol oxidation on carbon supported Pt, PtRu and Pt3Sn electrocatalysts. J. Power Sources 2006, 157, 98-103.
[65]
Colmati, F.; Antolini, E.; Gonzalez, E. R. Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid. Electrochim. Acta 2005, 50, 5496-5503.
[66]
Crabb, E. M.; Marshall, R.; Thompsett, D. Carbon monoxide electro-oxidation properties of carbon-supported PtSn catalysts prepared using surface organometallic chemistry. J. Electrochem. Soc. 2000, 147, 4440-4447.
[67]
An, K.; Somorjai, G. A. Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 2015, 145, 233-248.
[68]
Calvillo, L.; Celorrio, V.; Moliner, R.; Lázaro, M. J. Influence of the support on the physicochemical properties of Pt electrocatalysts: Comparison of catalysts supported on different carbon materials. Mater. Chem. Phys. 2011, 127, 335-341.
[69]
Rizo, R.; Sebastián, D.; Lázaro, M. J.; Pastor, E. On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl. Catal. B: Environ. 2017, 200, 246-254.
[70]
Alegre, C.; Gálvez, M. E.; Baquedano, E.; Pastor, E.; Moliner, R.; Lázaro, M. J. Influence of support’s oxygen functionalization on the activity of Pt/carbon xerogels catalysts for methanol electro-oxidation. Int. J. Hydrogen Energy 2012, 37, 7180-7191.
[71]
Sebastián, D.; Suelves, I.; Moliner, R.; Lázaro, M. J. The effect of the functionalization of carbon nanofibers on their electronic conductivity. Carbon 2010, 48, 4421-4431.
Nano Research
Pages 832-842
Cite this article:
Drzymała E, Gruzeł G, Depciuch J, et al. Ternary Pt/Re/SnO2/C catalyst for EOR: Electrocatalytic activity and durability enhancement. Nano Research, 2020, 13(3): 832-842. https://doi.org/10.1007/s12274-020-2704-1
Topics:

873

Views

36

Downloads

14

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 18 November 2019
Revised: 17 January 2020
Accepted: 08 February 2020
Published: 26 February 2020
© The author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return