AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene

Youngsin Park1,§Atanu Jana1,§Chang Woo Myung1,§Taeseung Yoon1Geungsik Lee1Claudius C. Kocher2Guanhua Ying2Vitaly Osokin2Robert A. Taylor2( )Kwang S. Kim1( )
School of Natural Science, Ulsan National Institute of Science and Technologh, Ulsan 44919, Republic of Korea
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK

§ Youngsin Park, Atanu Jana and Chang Woo Myung contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Diminishing surface defect states in perovskite nanocrystals is a highly challenging subject for enhancing optoelectronic device performance. We synthesized organic/inorganic lead-halide perovskite MAPbBr3 (MA = methylammonium) clusters comprising nanocrystals with diameters ranging between 20 and 30 nm and characterized an enhanced photoluminescence (PL) quantum yield (as much as ~ 7 times) by encapsulating the MAPbBr3 with graphene (Gr). The optical properties of MAPbBr3 and Gr/MAPbBr3 were investigated by temperature-dependent micro-PL and time-resolved PL measurements. Density functional theory calculations show that the surface defect states in MAPbBr3 are removed and the optical band gap is reduced by a 0.15 eV by encapsulation with graphene due to partial restoration of lattice distortions.

Electronic Supplementary Material

Download File(s)
12274_2020_2718_MOESM1_ESM.pdf (1.3 MB)

References

[1]
Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1, 16152.
[2]
De Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683-686.
[3]
Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376-1379.
[4]
Luo, J. S.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 2015, 345, 1593-1596.
[5]
Manser, J. S.; Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 2014, 8, 737-743.
[6]
Myung, C. W.; Yun, J.; Lee, G.; Kim, K. S. A new perspective on the role of a-site cations in perovskite solar cells. Adv. Energy Mater. 2018, 8, 1702898.
[7]
Jana, A.; Kim, K. S. Water-stable, fluorescent organic-inorganic hybrid and fully inorganic perovskites. ACS Energy Lett. 2018, 3, 2120-2126.
[8]
Cho, H.; Jeong, S. H.; Park, M. H.; Kim, Y. H.; Wolf, C.; Lee, C. L.; Heo, J. H.; Sadhanala, A.; Myoung, N. S.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222-1225.
[9]
Seo, H. K.; Kim, H.; Lee, J.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Kwon, S. J.; Han, T. H.; Yoo, S.; Lee, T. W. Efficient flexible organic/inorganic hybrid perovskite light-emitting diodes based on graphene anode. Adv. Mater. 2017, 29, 1605587.
[10]
Tombe, S.; Adam, G.; Heilbrunner, H.; Apaydin, D. H.; Ulbricht, C.; Sariciftci, N. S.; Arendse, C. J.; Iwuoha, E.; Scharber, M. C. Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C 2017, 5, 1714-1723.
[11]
Cui, D.; Yang, Z.; Yang, D.; Ren, X. D.; Liu, Y. C.; Wei, Q. B.; Fan, H. B.; Zeng, J. H.; Liu, S. Z. Color-tuned perovskite films prepared for efficient solar cell applications. J. Phys. Chem. C 2016, 120, 42-47.
[12]
Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2014, 2, 9221-9225.
[13]
Mittal, M.; Jana, A.; Sarkar, S.; Mahadevan, P.; Sapra, S. Size of the organic cation tunes the band gap of colloidal organolead bromide perovskite nanocrystals. J. Phys. Chem. Lett. 2016, 7, 3270-3277.
[14]
Yang, Y.; Yan, Y.; Yang, M. J.; Choi, S.; Zhu, K.; Luther, J. M.; Beard, M. C. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat. Commun. 2015, 6, 7961.
[15]
Shi, T. T.; Yin, W. J.; Hong, F.; Zhu, K.; Yan, Y. F. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 2015, 106, 103902.
[16]
Lozhkina, O. A.; Yudin, V. I.; Murashkina, A. A.; Shilovskikh, V. V.; Davydov, V. G.; Kevorkyants, R.; Emeline, A. V.; Kapitonov, Y. V.; Bahnemann, D. W. Low inhomogeneous broadening of excitonic resonance in MAPbBr3 single crystals. J. Phys. Chem. Lett. 2018, 9, 302-305.
[17]
Wright, A. D.; Verdi, C.; Milot, R. L.; Eperon, G. E.; Pérez-Osorio, M. A.; Snaith, H. J.; Giustino, F.; Johnston, M. B.; Herz, L. M. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Comm. 2016, 7, 11755.
[18]
Chen, F.; Zhu, C.; Xu, C. X.; Fan, P.; Qin, F. F.; Gowri Manohari, A.; Lu, J. F.; Shi, Z. L.; Xu, Q. Y.; Pan, A. L. Crystal structure and electron transition underlying photoluminescence of methylammonium lead bromide perovskites. J. Mater. Chem. C 2017, 5, 7739-7745.
[19]
Dai, J.; Zheng, H. G.; Zhu, C.; Lu, J. F.; Xu, C. X. Comparative investigation on temperature-dependent photoluminescence of CH3NH3PbBr3 and CH(NH2)2PbBr3 microstructures. J. Mater. Chem. C 2016, 4, 4408-4413.
[20]
Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533-4542.
[21]
Deschler, F.; Price, M.; Pathak, S.; Klintberg, L. E.; Jarausch, D. D.; Higler, R.; Hüttner, S.; Leijtens, T.; Stranks, S. D.; Snaith, H. J. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421-1426.
[22]
Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815-9821.
[23]
Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945-950.
[24]
Ahmed, G. H.; El-Demellawi, J. K.; Yin, J.; Pan, J.; Velusamy, D. B.; Hedhili, M. N.; Alarousu, E.; Bakr, O. M.; Alshareef, H. N.; Mohammed, O. F. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett. 2018, 3, 2301-2307.
[25]
Li, H.; Tao, L. M.; Huang, F. H.; Sun, Q.; Zhao, X. J.; Han, J. B.; Shen, Y.; Wang, M. K. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer. ACS Appl. Mater. Interfaces 2017, 9, 38967-38976.
[26]
Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.: Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.
[27]
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
[28]
Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
[29]
Yu, S. U.; Lee, H.; Cho, W. J.; Kim, C.; Kang, M. C.; Shin, H. J.; Kim, N.; Hahn, S. K.; Kim, K. S. Spectromicroscopic observation of a live single cell in a biocompatible liquid-enclosing graphene system. Nanoscale 2018, 10, 150-157.
[30]
Teunis, M. B.; Jana, A.; Dutta, P.; Johnson, M. A.; Mandal, M.; Muhoberac, B. B.; Sardar, R. Mesoscale growth and assembly of bright luminescent organolead halide perovskite quantum wires. Chem. Mater. 2016, 28, 5043-5054.
[31]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.
[32]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[33]
Tkatchenko, A.; Distasio, R. A.; Car, R.; Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012, 108, 236402.
[34]
Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for bader charge integration. J. Chem. Phys. 2011, 134, 064111.
[35]
Chin, S. H.; Choi, J. W.; Woo, H. C.; Kim, J. H.; Lee, H. S.; Lee, C. L. Realizing a highly luminescent perovskite thin film by controlling the grain size and crystallinity through solvent vapour annealing. Nanoscale 2019, 11, 5861-5867.
[36]
Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Antonietta Loi, M. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 2016, 5, e16056.
[37]
Onoda-Yamamuro, N.; Matsuo, T.; Suga, H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II). J. Phys. Chem. Solids 1990, 51, 1383-1395.
[38]
Zakharchenko, K. V.; Katsnelson, M. I.; Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 2009, 102, 046808.
[39]
Yoon, D.; Son, Y. W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011, 11, 3227-3231.
[40]
Liu, M. X.; Chen, Y. L.; Tan, C. S.; Quintero-Bermudez, R.; Proppe, A. H.; Munir, R.; Tan, H. R.; Voznyy, O.; Scheffel, B.; Walters, G. et al. Lattice anchoring stabilizes solution-processed semiconductors. Nature 2019, 570, 96-101.
[41]
Kunugita, H.; Kiyota, Y.; Udagawa, Y.; Takeoka, Y.; Nakamura, Y.; Sano, J.; Matsushita, T.; Kondo, T.; Ema, K. Exciton-exciton scattering in perovskite CH3NH3PbBr3 single crystal. Jpn. J. Appl. Phys. 2016, 55, 060304.
[42]
Fang, H. H.; Raissa, R.; Abdu-Aguye, M.; Adjokatse, S.; Blake, G. R.; Even, J.; Loi, M. A. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mat. 2015, 25, 2378-2385.
[43]
Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.; Uchida, K.; Miura, N. Comparative study on the excitons in lead-halide-based perovskitetype crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Comm. 2003, 127, 619-623.
[44]
Seguin, R.; Rodt, S.; Strittmatter, A.; Reißmann, L.; Bartel, T.; Hoffmann, A.; Bimberg, D.; Hahn, E.; Gerthsen, D. Multi-excitonic complexes in single InGaN quantum dots. Appl. Phys. Lett. 2004, 84, 4023-4025.
[45]
Quarti, C.; Grancini, G.; Mosconi, E.; Bruno, P.; Ball, J. M.; Lee, M. M.; Snaith, H. J.; Petrozza, A.; De Angelis, F. The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: Interplay of theory and experiment. J. Phys. Chem. Lett. 2014, 5, 279-284.
[46]
Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mat. 2014, 26, 1584-1589.
[47]
Xing, G. C.; Wu, B.; Wu, X. Y.; Li, M. J.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 2017, 8, 14558.
[48]
Stranks, S. D.; Burlakov, V. M.; Leijtens, T.; Ball, J. M.; Goriely, A.; Snaith, H. J. Recombination kinetics in organic-inorganic perovskites: Excitons, free charge, and subgap states. Phys. Rev. Appl. 2014, 2, 034007.
[49]
Smyth, D. M. Defects and order in perovskite-related oxides. Annu. Rev. Mater. Sci. 1985, 15, 329-357.
[50]
Yin, W. J.; Shi, T. T.; Yan, Y. F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903.
[51]
Shkrob, I. A.; Marin, T. W. Charge trapping in photovoltaically active perovskites and related halogenoplumbate compounds. J. Phys. Chem. Lett. 2014, 5, 1066-1071.
[52]
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[53]
Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.
[54]
Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071-2083.
[55]
Volonakis, G.; Giustino, F. Ferroelectric graphene-perovskite interfaces. J. Phys. Chem. Lett. 2015, 6, 2496-2502.
[56]
Myung, C. W.; Javaid, S.; Kim, K. S.; Lee, G. Rashba-dresselhaus effect in inorganic/organic lead iodide perovskite interfaces. ACS Energy Lett. 2018, 3, 1294-1300.
Nano Research
Pages 932-938
Cite this article:
Park Y, Jana A, Myung CW, et al. Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene. Nano Research, 2020, 13(4): 932-938. https://doi.org/10.1007/s12274-020-2718-8
Topics:

1039

Views

13

Crossref

N/A

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 08 January 2020
Revised: 13 February 2020
Accepted: 14 February 2020
Published: 09 March 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return