Sort:
Open Access Research Article Issue
Coarse and fine-tuning of lasing transverse electromagnetic modes in coupled all-inorganic perovskite quantum dots
Nano Research 2021, 14(1): 108-113
Published: 05 January 2021
Abstract PDF (596.1 KB) Collect
Downloads:28

Inorganic perovskite lasers are of particular interest, with much recent work focusing on Fabry-Pérot cavity-forming nanowires. We demonstrate the direct observation of lasing from transverse electromagnetic (TEM) modes with a long coherence time ~ 9.5 ps in coupled CsPbBr3 quantum dots, which dispense with an external cavity resonator and show how the wavelength of the modes can be controlled via two independent tuning-mechanisms. Controlling the pump power allowed us to fine-tune the TEM mode structure to the emission wavelength, thus providing a degree of control over the properties of the lasing signal. The temperature-tuning provided an additional degree of control over the wavelength of the lasing peak, importantly, maintained a constant full width at half maximum (FWHM) over the entire tuning range without mode-hopping.

Research Article Issue
Enhanced photoluminescence quantum yield of MAPbBr3 nanocrystals by passivation using graphene
Nano Research 2020, 13(4): 932-938
Published: 09 March 2020
Abstract PDF (14.9 MB) Collect
Downloads:27

Diminishing surface defect states in perovskite nanocrystals is a highly challenging subject for enhancing optoelectronic device performance. We synthesized organic/inorganic lead-halide perovskite MAPbBr3 (MA = methylammonium) clusters comprising nanocrystals with diameters ranging between 20 and 30 nm and characterized an enhanced photoluminescence (PL) quantum yield (as much as ~ 7 times) by encapsulating the MAPbBr3 with graphene (Gr). The optical properties of MAPbBr3 and Gr/MAPbBr3 were investigated by temperature-dependent micro-PL and time-resolved PL measurements. Density functional theory calculations show that the surface defect states in MAPbBr3 are removed and the optical band gap is reduced by a 0.15 eV by encapsulation with graphene due to partial restoration of lattice distortions.

Total 2