AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics

Liangmei Wu1,2,§Jinan Shi2,§Zhang Zhou1,2Jiahao Yan1,2Aiwei Wang1,2Ce Bian1,2Jiajun Ma1,2Ruisong Ma1,2Hongtao Liu1,2Jiancui Chen1,2Yuan Huang1Wu Zhou2( )Lihong Bao1,2,3( )Min Ouyang4Sokrates T. Pantelides5Hong-Jun Gao1,2,3
Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190, China
University of Chinese Academy of Sciences & CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Department of Physics, University of Maryland, MD 20742, USA
Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA

§ Liangmei Wu and Jinan Shi contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Two-dimensional (2D) materials as channel materials provide a promising alternative route for future electronics and flexible electronics, but the device performance is affected by the quality of interface between the 2D-material channel and the gate dielectric. Here we demonstrate an indium selenide (InSe)/hexagonal boron nitride (hBN)/graphite heterostructure as a 2D field-effect transistor (FET), with InSe as channel material, hBN as dielectric, and graphite as gate. The fabricated FETs feature high electron mobility up to 1,146 cm2·V-1·s-1 at room temperature and on/off ratio up to 1010 due to the atomically flat gate dielectric. Integrated digital inverters based on InSe/hBN/graphite heterostructures are constructed by local gating modulation and an ultrahigh voltage gain up to 93.4 is obtained. Taking advantages of the mechanical flexibility of these materials, we integrated the heterostructured InSe FET on a flexible substrate, exhibiting little modification of device performance at a high strain level of up to 2%. Such high-performance heterostructured device configuration based on 2D materials provides a new way for future electronics and flexible electronics.

Electronic Supplementary Material

Download File(s)
12274_2020_2757_MOESM1_ESM.pdf (1.8 MB)

References

[1]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[3]
Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[4]
Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[5]
Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[6]
Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 2004, 303, 1644-1646.
[7]
Pecora, A.; Maiolo, L.; Cuscunà, M.; Simeone, D.; Minotti, A.; Mariucci, L.; Fortunato, G. Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic. Solid State Electron. 2008, 52, 348-352.
[8]
Chen, J. H.; Jang, C.; Xiao, S. D.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206-209.
[9]
Katsnelson, M. I.; Geim, A. K. Electron scattering on microscopic corrugations in graphene. Philos. Trans. A Math. Phys. Eng. Sci. 2008, 366, 195-204.
[10]
Fratini, S.; Guinea, F. Substrate-limited electron dynamics in graphene. Phys. Rev. B 2008, 77, 195415.
[11]
Meric, I.; Han, M. Y.; Young, A. F.; Ozyilmaz, B.; Kim, P.; Shepard, K. L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654-659.
[12]
Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.
[13]
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[14]
Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931-7936.
[15]
Feng, W.; Zheng, W.; Cao, W. W.; Hu, P. A. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 2014, 26, 6587-6593.
[16]
Sucharitakul, S.; Goble, N. J.; Kumar, U. R.; Sankar, R.; Bogorad, Z. A.; Chou, F. C.; Chen, Y. T.; Gao, X. P. A. Intrinsic electron mobility exceeding 103 cm2/(V s) in multilayer InSe FETs. Nano Lett. 2015, 15, 3815-3819.
[17]
Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223-227.
[18]
Ho, P. H.; Chang, Y. R.; Chu, Y. C.; Li, M. K.; Tsai, C. A.; Wang, W. H.; Ho, C. H.; Chen, C. W.; Chiu, P. W. High-mobility InSe transistors: The role of surface oxides. ACS Nano 2017, 11, 7362-7370.
[19]
Li, M. J.; Lin, C. Y.; Yang, S. H.; Chang, Y. M.; Chang, J. K.; Yang, F. S.; Zhong, C. R.; Jian, W. B.; Lien, C. H.; Ho, C. H. et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater. 2018, 30, 1803690.
[20]
Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217-222.
[21]
Feng, W.; Zheng, W.; Chen, X. S.; Liu, G. B.; Hu, P. A. Gate modulation of threshold voltage instability in multilayer InSe field effect transistors. ACS Appl. Mater. Interfaces 2015, 7, 26691-26695.
[22]
Feng, W.; Zhou, X.; Tian, W. Q.; Zheng, W.; Hu, P. A. Performance improvement of multilayer InSe transistors with optimized metal contacts. Phys. Chem. Chem. Phys. 2015, 17, 3653-3658.
[23]
Kang, P.; Michaud-Rioux, V.; Kong, X. H.; Yu, G. H.; Guo, H. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater. 2017, 4, 045014.
[24]
Yang, Z. B.; Jie, W. J.; Mak, C. H.; Lin, S. H.; Lin, H. H.; Yang, X. F.; Yan, F.; Lau, S. P.; Hao, J. H. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse. ACS Nano 2017, 11, 4225-4236.
[25]
Hamer, M.; Tóvári, E.; Zhu, M. J.; Thompson, M. D.; Mayorov, A.; Prance, J.; Lee, Y.; Haley, R. P.; Kudrynskyi, Z. R.; Patanè, A. et al. Gate-defined quantum confinement in InSe-based van der Waals heterostructures. Nano Lett. 2018, 18, 3950-3955.
[26]
Zeng, J. W.; Liang, S. J.; Gao, A. Y.; Wang, Y.; Pan, C.; Wu, C. C.; Liu, E. F.; Zhang, L. L.; Cao, T. J.; Liu, X. W. et al. Gate-tunable weak antilocalization in a few-layer InSe. Phys. Rev. B 2018, 98, 125414.
[27]
Yuan, K.; Yin, R. Y.; Li, X. Q.; Han, Y. M.; Wu, M.; Chen, S. L.; Liu, S.; Xu, X. L.; Watanabe, K.; Taniguchi, T. et al. Realization of quantum Hall effect in chemically synthesized InSe. Adv. Funct. Mater. 2019, 29, 1904032.
[28]
Zeng, J. W.; He, X.; Liang, S. J.; Liu, E. F.; Sun, Y. H.; Pan, C.; Wang, Y.; Cao, T. J.; Liu, X. W.; Wang, C. Y. et al. Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 2018, 18, 7538-7545.
[29]
Premasiri, K.; Radha, S. K.; Sucharitakul, S.; Kumar, U. R.; Sankar, R.; Chou, F. C.; Chen, Y. T.; Gao, X. P. A. Tuning Rashba spin-orbit coupling in gated multilayer InSe. Nano Lett. 2018, 18, 4403-4408.
[30]
Premasiri, K.; Gao, X. P. A. Tuning spin-orbit coupling in 2D materials for spintronics: A topical review. J. Phys.: Condens. Matter 2019, 31, 193001.
[31]
Lei, S. D.; Ge, L. H.; Najmaei, S.; George, A.; Kappera, R.; Lou, J.; Chhowalla, M.; Yamaguchi, H.; Gupta, G.; Vajtai, R. et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano 2014, 8, 1263-1272.
[32]
Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800-2806.
[33]
Feng, W.; Wu, J. B.; Li, X. L.; Zheng, W.; Zhou, X.; Xiao, K.; Cao, W. W.; Yang, B.; Idrobo, J. C.; Basile, L. et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response. J. Mater. Chem. C 2015, 3, 7022-7028.
[34]
Luo, W. G.; Cao, Y. F.; Hu, P.; Cai, K. M.; Feng, Q.; Yan, F. G.; Yan, T. F.; Zhang, X. H.; Wang, K. Y. Gate tuning of high-performance inse-based photodetectors using graphene electrodes. Adv. Opt. Mater. 2015, 3, 1418-1423.
[35]
Mudd, G. W.; Svatek, S. A.; Hague, L.; Makarovsky, O.; Kudrynskyi, Z. R.; Mellor, C. J.; Beton, P. H.; Eaves, L.; Novoselov, K. S.; Kovalyuk, Z. D. et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater. 2015, 27, 3760-3766.
[36]
Li, Z. J.; Qiao, H.; Guo, Z. N.; Ren, X. H.; Huang, Z. Y.; Qi, X.; Dhanabalan, S. C.; Ponraj, J. S.; Zhang, D.; Li, J. Q. et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv. Funct. Mater. 2018, 28, 1705237.
[37]
Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.
[38]
Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764-767.
[39]
Kretinin, A. V.; Cao, Y.; Tu, J. S.; Yu, G. L.; Jalil, R.; Novoselov, K. S.; Haigh, S. J.; Gholinia, A.; Mishchenko, A.; Lozada, M. et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett. 2014, 14, 3270-3276.
[40]
Lee, C.; Rathi, S.; Khan, M. A.; Lim, D.; Kim, Y.; Yun, S. J.; Youn, D. H.; Watanabe, K.; Taniguchi, T.; Kim, G. H. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates. Nanotechnology 2018, 29, 335202.
[41]
Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934-9938.
[42]
Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674-4680.
[43]
Zou, X. M.; Wang, J. L.; Chiu, C. H.; Wu, Y.; Xiao, X. H.; Jiang, C. Z.; Wu, W. W.; Mai, L. Q.; Chen, T. S.; Li, J. C. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 2014, 26, 6255-6261.
[44]
Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954-959.
[45]
Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.
[46]
Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263-3269.
[47]
Das, S.; Dubey, M.; Roelofs, A. High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 2014, 105, 083511.
[48]
Tosun, M.; Chuang, S.; Fang, H.; Sachid, A. B.; Hettick, M.; Lin, Y. J.; Zeng, Y. P.; Javey, A. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 2014, 8, 4948-4953.
[49]
Yu, L. L.; Zubair, A.; Santos, E. J. G.; Zhang, X.; Lin, Y. X.; Zhang, Y. H.; Palacios, T. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 2015, 15, 4928-4934.
[50]
Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111-4119.
[51]
Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145-2151.
Nano Research
Pages 1127-1132
Cite this article:
Wu L, Shi J, Zhou Z, et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics. Nano Research, 2020, 13(4): 1127-1132. https://doi.org/10.1007/s12274-020-2757-1
Topics:

930

Views

59

Crossref

N/A

Web of Science

55

Scopus

4

CSCD

Altmetrics

Received: 12 February 2020
Revised: 12 March 2020
Accepted: 13 March 2020
Published: 17 April 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return