AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-high current gain tunneling hot-electron transfer amplifier based on vertical van der Waals heterojunctions

Xu Zhao1,§( )Peng Chen1,2,§Xingqiang Liu2( )Guoli Li2Xuming Zou2Yuan Liu2Qilong Wu2Yufang Liu1( )Woo Jong Yu3Lei Liao2
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Changsha 410082, China
Henan Normal University, School of Physics, Xinxiang 453007, China
Department of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea

§ Xu Zhao and Peng Chen contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

Due to the backscattered parasitic current from the barriers, the current gain of the widely used amplifier is far from ideal. In this work, we demonstrate a vertical Au/Al2O3/BP/MoS2 tunneling hot-electron transfer amplifier with a hot-electron emitter-base junction and a p-n junction as the base-collector barrier. Fairly monoenergetic electrons traverse through the ultrathin Al2O3 dielectric via tunneling, which are accelerated and shifted to the collector region. The devices exhibit a high current on-off ratio of > 105 and a high current density (JC) of ~ 1,000 A/cm2 at the same time. Notably, this work demonstrates a common-emitter current gain (β) value of 1,384 with a nanowatt power consumption at room temperature, which is a record high value among the all 2D based hot-electron transistors. Furthermore, the temperature dependent performance is investigated, and the β value of 1,613 is obtained at 150 K. Therefore, this work presents the potential of 2D based transistors for high-performance applications.

Electronic Supplementary Material

Download File(s)
12274_2020_2814_MOESM1_ESM.pdf (1.9 MB)

References

[1]
Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 2009, 94, 062107.
[2]
Heiblum, M.; Fischetti, M. V. Ballistic hot-electron transistors. IBM J. Res. Dev. 1990, 34, 530-549.
[3]
Luryi, S. An induced base hot-electron transistor. IEEE Electron Device Lett. 1985, 6, 178-180.
[4]
Luryi, S. Induced base transistor. Phys. B + C 1985, 134, 456-469.
[5]
Vaziri, S.; Lupina, G.; Henkel, C.; Smith, A. D.; Östling, M.; Dabrowski, J.; Lippert, G.; Mehr, W.; Lemme, M. C. A graphene-based hot electron transistor. Nano Lett. 2013, 13, 1435-1439.
[6]
Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A. D.; Lupina, G.; Lemme, M. C.; Östling, M. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors. Nanoscale 2015, 7, 13096-13104.
[7]
Lan, Y. W.; Torres, C. M. Jr.; Zhu, X. D.; Qasem, H.; Adleman, J. R.; Lerner, M. B.; Tsai, S. H.; Shi, Y. M.; Li, L. J.; Yeh, W. K. et al. Dual-mode operation of 2D material-base hot electron transistors. Sci. Rep. 2016, 6, 32503.
[8]
Matthews, P.; Kelly, M. J.; Law, V. J.; Hasko, D. G.; Pepper, M.; Ahmed, H.; Peacock, D. C.; Frost, J. E. F.; Ritchie, D. A.; Jones, G. A. C. Two-dimensional electron gas base hot electron transistor. Electron. Lett. 1990, 26, 862-864.
[9]
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.
[10]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[11]
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[12]
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[13]
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[14]
Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.
[15]
Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[16]
Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311-1314.
[17]
Lee, G.; Pearton, S. J.; Ren, F.; Kim, J. Two-dimensionally layered pblack phosphorus/n-MoS2/p-Black phosphorus heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 10347-10352.
[18]
Liu, L. W.; Xu, N. S.; Zhang, Y.; Zhao, P.; Chen, H. J.; Deng, S. Z. Van der Waals bipolar junction transistor using vertically stacked two-dimensional atomic crystals. Adv. Funct. Mater. 2019, 29, 1807893.
[19]
Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[20]
Lee, G. H.; Lee, C. H.; Van Der Zande, A M.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T F.; Hone, J.; Kim, P. Heterostructures based on inorganic and organic van der Waals systems. APL Mater. 2014, 2, 092511.
[21]
Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558-7566.
[22]
Zhou, R. P.; Ostwal, V.; Appenzeller, J. Vertical versus lateral two-dimensional heterostructures: On the topic of atomically abrupt p/n-junctions. Nano Lett. 2017, 17, 4787-4792.
[23]
Li, H.; Ye, L.; Xu, J. B. High-performance broadband floating-base bipolar phototransistor based on WSe2/BP/MoS2 heterostructure. ACS Photonics 2017, 4, 823-829.
[24]
Zubair, A.; Nourbakhsh, A; Hong, J. Y.; Qi, M.; Song, Y.; Jena, D.; Kong, J.; Dresselhaus, M.; Palacios, T. Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter. Nano Lett. 2017, 17, 3089-3096.
[25]
Mead, C. A. Operation of tunnel-emission devices. J. Appl. Phys. 1961, 32, 646.
[26]
Torres, C. M. Jr.; Lan, Y. W.; Zeng, C. F.; Chen, J. H.; Kou, X. F.; Navabi, A.; Tang, T. S.; Montazeri, M.; Adleman, J. R.; Lerner, M. B. et al. High-current gain two-dimensional MoS2base hot-electron transistors. Nano Lett. 2015, 15, 7905-7912.
[27]
Bédécarrats, T.; Galy, P.; Fenouillet-Béranger, C.; Cristoloveanu, S. Investigation of built-in bipolar junction transistor in FD-SOI BIMOS. Solid-State Electron. 2019, 159, 177-183.
[28]
Yu, G. F.; Liang, R. R.; Wang, X. W.; Xu, J; Ren, T. L. Operation of silicon-germanium heterojunction bipolar transistors with different structures at deep cryogenic temperature. Sci. Bull. 2019, 64, 469-477.
[29]
Liu, X. C.; Qu. D. S.; Li, H. M.; Moon, I.; Ahmed, F.; Kim, C.; Lee, M.; Choi, Y.; Cho, J. H.; Hone, J. C. Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p-n junction. ACS Nano 2017, 11, 9143-9150.
[30]
Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 2014, 8, 8292-8299.
[31]
Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.
[32]
Wang, H. N.; Zhang, C. J.; Rana, F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. Nano Lett. 2015, 15, 339-345.
[33]
Zeng, C. F.; Song, E. B.; Wang, M. S.; Lee, S.; Torres, C. M. Jr.; Tang, J. S.; Weiller, B. H.; Wang, K. L. Vertical graphene-base hot-electron transistor. Nano Lett. 2013, 13, 2370-2375.
[34]
Shockley, W. Electrons and Holes in Semiconductors; D. Van Nostrand Company: New York, 1950.
[35]
Poon, H. C.; Gummel, H. K.; Scharfetter, D. L. High injection in epitaxial transistors. IEEE Trans. Electron Dev. 1969, 16, 455-457.
Nano Research
Pages 2085-2090
Cite this article:
Zhao X, Chen P, Liu X, et al. Ultra-high current gain tunneling hot-electron transfer amplifier based on vertical van der Waals heterojunctions. Nano Research, 2020, 13(8): 2085-2090. https://doi.org/10.1007/s12274-020-2814-9
Topics:

840

Views

3

Crossref

N/A

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 20 March 2020
Revised: 13 April 2020
Accepted: 16 April 2020
Published: 05 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return