AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Electronics based on two-dimensional materials: Status and outlook

Senfeng Zeng1,§Zhaowu Tang1,§Chunsen Liu1,2Peng Zhou1( )
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
School of Computer Science, Fudan University, Shanghai 200433, China

§ Senfeng Zeng and Zhaowu Tang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Since Moore’s law in the traditional semiconductor industry is facing shocks, More Moore and More than Moore are proposed as two paths to maintain the development of the semiconductor industry by adopting new architectures or new materials, in which the former is committed to the continued scaling of transistors for performance enhancement, and the latter pursues the realization of functional diversification of electronic systems. Two-dimensional (2D) materials are supposed to play an important role in these two paths. In More Moore, the ultimate thin thickness and the dangling-bond-free surface of 2D channels offer excellent gate electrostatics while avoiding the degradation of carrier mobility at the same time, so that the transistors can be further scaled down for higher performance. In More than Moore, devices based on 2D materials can well meet the requirements of electronic systems for functional diversity, like that they can operate at high frequency, exhibit excellent sensitivity to the changes in the surroundings at room temperature, have good mechanical flexibility, and so on. In this review, we present the application of 2D materials in More Moore and More than Moore domains of electronics, outlining their potential as a technological option for logic electronics, memory electronics, radio-frequency electronics, sensing electronics, and flexible electronics.

References

[1]
G. E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 1998, 86, 82-85.
[2]
I. Ferain,; C. A. Colinge,; J. P. Colinge, Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 2011, 479, 310-316.
[3]
M. Yankowitz,; Q. Ma,; P. Jarillo-Herrero,; B. J. LeRoy, van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 2019, 1, 112-125.
[4]
Y. C. Yeo,; X. Gong,; M. J. H. Van Dal,; G. Vellianitis,; M. Passlack, Germanium-based transistors for future high performance and low power logic applications. In Proceedings of 2015 IEEE International Electron Devices Meeting, Washington, DC, USA, 2015.
[5]
H. D. Sun,; M. Vagin,; S. H. Wang,; X. Crispin,; R. Forchheimer,; M. Berggren,; S. Fabiano, Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 2018, 30, 1704916.
[6]
E. L. Li,; X. M. Wu,; S. Q. Lan,; Q. Yang,; Y. Fang,; H. P. Chen,; T. L. Guo, Flexible ultra-short channel organic ferroelectric non-volatile memory transistors. J. Mater. Chem. C 2019, 7, 998-1005.
[7]
P. F. Wang,; X. Lin,; L. Liu,; Q. Q. Sun,; P. Zhou,; X. Y. Liu,; W. Liu,; Y. Gong,; D. W. Zhang, A semi-floating gate transistor for low- voltage ultrafast memory and sensing operation. Science 2013, 341, 640-643.
[8]
Z. H. Zhang,; Z. W. Wang,; T. Shi,; C. Bi,; F. Rao,; Y. M. Cai,; Q. Liu,; H. Q. Wu,; P. Zhou, Memory materials and devices: From concept to application. InfoMat 2020, 2, 261-290.
[9]
R. H. Yan,; A. Ourmazd,; K. F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Devices 1992, 39, 1704-1710.
[10]
K. Suzuki,; T. Tanaka,; Y. Tosaka,; H. Horie,; Y. Arimoto, Scaling theory for double-gate SOI MOSFET's. IEEE Trans. Electron Devices 1993, 40, 2326-2329.
[11]
Z. Krivokapic,; U. Rana,; R. Galatage,; A. Razavieh,; A. Aziz,; J. Liu,; J. Shi,; H. J. Kim,; R. Sporer,; C. Serrao, et al. 14 nm ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications. In Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017.
[12]
C. Auth,; A. Aliyarukunju,; M. Asoro,; D. Bergstrom,; V. Bhagwat,; J. Birdsall,; N. Bisnik,; M. Buehler,; V. Chikarmane,; G. Ding, et al. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017.
[13]
H. J. Lee,; S. Rami,; S. Ravikumar,; V. Neeli,; K. Phoa,; B. Sell,; Y. Zhang, Intel 22 nm FinFET (22FFL) process technology for RF and mm wave applications and circuit design optimization for FinFET technology. In Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018.
[14]
H. E. Jung,; M. Shin, Effects of Si/SiO2 interface stress on the performance of ultra-thin-body field effect transistors: A first-principles study. Nanotechnology 2018, 29, 025201.
[15]
Z. J. Zheng,; X. Yu,; Y. Y. Zhang,; M. Xie,; R. Cheng,; Y. Zhao, Back-gate modulation in UTB GeOI pMOSFETs with advanced substrate fabrication technique. IEEE Trans. Electron Devices 2018, 65, 895-900.
[16]
Y. K. Li,; R. Zhang, Hole mobility in the ultra-thin-body junctionless germanium-on-insulator p-channel metal-oxide-semiconductor field- effect transistors. Appl. Phys. Lett. 2019, 114, 132101.
[17]
Y. Liu,; X. D. Duan,; Y. Huang,; X. F. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.
[18]
A. D. Latorre-Rey,; F. F. M. Sabatti,; J. D. Albrecht,; M. Saraniti, Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors. Appl. Phys. Lett. 2017, 111, 013506.
[19]
N. R. Glavin,; K. D. Chabak,; E. R. Heller,; E. A. Moore,; T. A. Prusnick,; B. Maruyama,; D. E. Walker, Jr; D. L. Dorsey,; Q. Paduano,; M. Snure, Flexible gallium nitride: Flexible gallium nitride for high-performance, strainable radio-frequency devices (Adv. Mater. 47/2017). Adv. Mater. 2017, 29, 1770338.
[20]
B. Urasinska-Wojcik,; T. A. Vincent,; M. F. Chowdhury,; J. W. Gardner, Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment. Sens. Actuators B Chem. 2017, 239, 1051-1059.
[21]
M. Keshavarz,; P. Kassanos,; B. Tan,; K. Venkatakrishnan, Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020, 5, 294-307.
[22]
J. Kwon,; Y. Takeda,; R. Shiwaku,; S. Tokito,; K. Cho,; S. Jung, Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54.
[23]
T. K. Li,; M. Mastro,; A. Dadgar, III-V Compound Semiconductors: Integration with Silicon-Based Microelectronics; CRC Press: Parkway, NW, USA, 2019.
[24]
N. Barsan,; U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143-167.
[25]
A. Nathan,; A. Ahnood,; M. T. Cole,; S. Lee,; Y. Suzuki,; P. Hiralal,; F. Bonaccorso,; T. Hasan,; L. Garcia-Gancedo,; A. Dyadyusha, et al. Flexible electronics: The next ubiquitous platform. Proc. IEEE 2012, 100, 1486-1517.
[26]
J. H. Kang,; W. Cao,; X. J. Xie,; D. Sarkar,; W. Liu,; K. Banerjee, Graphene and beyond-graphene 2D crystals for next-generation green electronics. In Proceedings of SPIE Micro-and Nanotechnology Sensors, Systems, and Applications VI, Baltimore, Maryland, USA, 2014, p 908305.
[27]
H. Xu,; H. M. Zhang,; Z. X. Guo,; Y. W. Shan,; S. W. Wu,; J. L. Wang,; W. D. Hu,; H. Q. Liu,; Z. Z. Sun,; C. Luo, et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.
[28]
A. Dathbun,; Y. Kim,; S. Kim,; Y. Yoo,; M. S. Kang,; C. Lee,; J. H. Cho, Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 2017, 17, 2999-3005.
[29]
A. Dathbun,; Y. Kim,; Y. Choi,; J. Sun,; S. Kim,; B. Kang,; M. S. Kang,; D. K. Hwang,; S. Lee,; C. Lee, et al. Selectively metallized 2D materials for simple logic devices. ACS Appl. Mater. Interfaces 2019, 11, 18571-18579.
[30]
C. S. Liu,; H. W. Chen,; X. Hou,; H. Zhang,; J. Han,; Y. G. Jiang,; X. Y. Zeng,; D. W. Zhang,; P. Zhou, Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662-667.
[31]
X. Hou,; H. Zhang,; C. S. Liu,; S. J. Ding,; W. Z. Bao,; D. W. Zhang,; P. Zhou, Charge-trap memory based on hybrid 0D quantum dot-2D WSe2 structure. Small 2018, 14, 1800319.
[32]
J. Y. Li,; J. Y. Li,; Y. Ding,; C. S. Liu,; X. Hou,; H. W. Chen,; Y. Xiong,; D. W. Zhang,; Y. Chai,; P. Zhou, Highly area-efficient low- power SRAM cell with 2 transistors and 2 resistors. In Proceedings of 2019 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2019.
[33]
C. S. Liu,; X. Yan,; X. F. Song,; S. J. Ding,; D. W. Zhang,; P. Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.
[34]
J. Y. Li,; L. Liu,; X. Z. Chen,; C. S. Liu,; J. L. Wang,; W. D. Hu,; D. W. Zhang,; P. Zhou, Symmetric ultrafast writing and erasing speeds in quasi-nonvolatile memory via van der Waals heterostructures. Adv. Mater. 2019, 31, e1808035.
[35]
R. Cheng,; J. W. Bai,; L. Liao,; H. L. Zhou,; Y. Chen,; L. X. Liu,; Y. C. Lin,; S. Jiang,; Y. Huang,; X. F. Duan, High-frequency self- aligned graphene transistors with transferred gate stacks. Proc. Natl. Acad. Sci. USA 2012, 109, 11588-11592.
[36]
C. Yu,; Z. Z. He,; X. B. Song,; Q. B. Liu,; T. T. Han,; S. B. Dun,; J. J. Wang,; C. J. Zhou,; J. C. Guo,; Y. J. Lv, et al. Improvement of the frequency characteristics of graphene field-effect transistors on SiC substrate. IEEE Electron Device Lett. 2017, 38, 1339-1342.
[37]
A. Sanne,; S. Park,; R. Ghosh,; M. N. Yogeesh,; C. Liu,; L. Mathew,; R. Rao,; D. Akinwande,; S. K. Banerjee, Embedded gate CVD MoS2 microwave FETs. npj 2D Mater. Appl. 2017, 1, 26.
[38]
Q. G. Gao,; Z. F. Zhang,; X. L. Xu,; J. Song,; X. F. Li,; Y. Q. Wu, Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 2018, 9, 4778.
[39]
T. Y. Li,; M. C. Tian,; S. M. Li,; M. Q. Huang,; X. Xiong,; Q. L. Hu,; S. C. Li,; X. F. Li,; Y. Q. Wu, Black phosphorus radio frequency electronics at cryogenic temperatures. Adv. Electron. Mater. 2018, 4, 1800138.
[40]
C. Li,; K. C. Xiong,; L. Li,; Q. S. Guo,; X. L. Chen,; A. Madjar,; K. Watanabe,; T. Taniguchi,; J. C. M. Hwang,; F. N. Xia, Black phosphorus high-frequency transistors with local contact bias. ACS Nano 2020, 14, 2118-2125.
[41]
T. Pham,; G. H. Li,; E. Bekyarova,; M. E. Itkis,; A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196-3205.
[42]
Z. H. Liu,; J. Y. Huang,; Q. Wang,; J. X. Zhou,; J. X. Ye,; X. J. Li,; Y. F. Geng,; Z. Q. Liang,; Y. Du,; X. Q. Tian, Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sens. Actuators B Chem. 2020, 308, 127650.
[43]
G. Bae,; I. S. Jeon,; M. Jang,; W. Song,; S. Myung,; J. Lim,; S. S. Lee,; H. K. Jung,; C. Y. Park,; K. S. An, Complementary dual-channel gas sensor devices based on a role-allocated ZnO/graphene hybrid heterostructure. ACS Appl. Mater. Interfaces 2019, 11, 16830-16837.
[44]
A. Maity,; X. Y. Sui,; H. H. Pu,; K. J. Bottum,; B. Jin,; J. B. Chang,; G. H. Zhou,; G. H. Lu,; J. H. Chen, Sensitive field-effect transistor sensors with atomically thin black phosphorus nanosheets. Nanoscale 2020, 12, 1500-1512.
[45]
R. Campos,; J. Borme,; J. R. Guerreiro,; G. Machado, Jr; M. F. Cerqueira,; D. Y. Petrovykh,; P. Alpuim, Attomolar label-free detection of DNA hybridization with electrolyte-gated graphene field-effect transistors. ACS Sens. 2019, 4, 286-293.
[46]
Y. D. Liu,; K. W. Ang, Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416-7423.
[47]
F. Y. Liu,; N. Yogeswaran,; W. Navaraj,; R. Dahiya, Flexible logic circuits by using van der Waals contacted graphene field-effect transistors. In Proceedings of 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp 1-5.
[48]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[49]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[50]
C. D. English,; G. Shine,; V. E. Dorgan,; K. C. Saraswat,; E. Pop, Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824-3830.
[51]
Y. Z. Meng,; C. Y. Ling,; R. Xin,; P. Wang,; Y. Song,; H. J. Bu,; S. Gao,; X. F. Wang,; F. Q. Song,; J. L. Wang, et al. Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics. npj Quantum Mater. 2017, 2, 16.
[52]
Y. J. Xu,; X. Y. Shi,; Y. S. Zhang,; H. T. Zhang,; Q. L. Zhang,; Z. L. Huang,; X. F. Xu,; J. Guo,; H. Zhang,; L. T. Sun, et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 2020, 11, 1330.
[53]
S. S. Chee,; D. Seo,; H. Kim,; H. Jang,; S. Lee,; S. P. Moon,; K. H. Lee,; S. W. Kim,; H. Choi,; M. H. Ham, Lowering the schottky barrier height by graphene/Ag electrodes for high-mobility MoS2 field-effect transistors. Adv. Mater. 2019, 31, 1804422.
[54]
A. Aji,; P. Solís-Fernández,; H. G. Ji,; K. Fukuda,; H. Ago, High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 2017, 27, 1703448.
[55]
H. G. Ji,; P. Solís-Fernández,; D. Yoshimura,; M. Maruyama,; T. Endo,; Y. Miyata,; S. Okada,; H. Ago, Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Adv. Mater. 2019, 31, 1903613.
[56]
M. A. Stoeckel,; M. Gobbi,; T. Leydecker,; Y. Wang,; M. Eredia,; S. Bonacchi,; R. Verucchi,; M. Timpel,; M. V. Nardi,; E. Orgiu, et al. Boosting and balancing electron and hole mobility in single- and bilayer WSe2 devices via tailored molecular functionalization. ACS Nano 2019, 13, 11613-11622.
[57]
W. H. Chang,; T. Irisawa,; H. Ishii,; H. Hattori,; N. Uchida,; T. Maeda, HEtero-layer-lift-off (HELLO) technology for enhanced hole mobility in UTB GeOI pMOSFETs. In Proceedings of 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, China, 2018, pp 1-2.
[58]
E. Cartier,; A. Majumdar,; K. T. Lee,; T. Ando,; M. M. Frank,; J. Rozen,; K. A. Jenkins,; C. Liang,; C. W. Cheng,; J. Bruley, et al. Electron mobility in thin In0.53Ga0.47As channel. In Proceedings of 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 2017, pp 292-295.
[59]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[60]
K. Choudhary,; I. Kalish,; R. Beams,; F. Tavazza, High-throughput identification and characterization of two-dimensional materials using density functional theory. Sci. Rep. 2017, 7, 5179.
[61]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[62]
Y. Zhang,; T. R. Chang,; B. Zhou,; Y. T. Cui,; H. Yan,; Z. K. Liu,; F. Schmitt,; J. Lee,; R. Moore,; Y. L. Chen, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111-115.
[63]
F. N. Xia,; H. Wang,; D. Xiao,; M. Dubey,; A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899-907.
[64]
R. Moriya,; T. Yamaguchi,; Y. Inoue,; Y. Sata,; S. Morikawa,; S. Masubuchi,; T. Machida, (Invited) Vertical field effect transistor based on graphene/transition metal dichalcogenide van der Waals heterostructure. ECS Trans. 2015, 69, 357-363.
[65]
M. Farooq Khan,; M. Arslan Shehzad,; M. Zahir Iqbal,; M. Waqas Iqbal,; G. Nazir,; Y. Seo,; J. Eom, A facile route to a high-quality graphene/MoS2 vertical field-effect transistor with gate-modulated photocurrent response. J. Mater. Chem. C 2017, 5, 2337-2343.
[66]
X. M. Qin,; W. Hu,; J. L. Yang, Tunable schottky and ohmic contacts in graphene and tellurene van der Waals heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 23611-23619.
[67]
F. Wang,; Z. X. Wang,; L. Yin,; R. Q. Cheng,; J. J. Wang,; Y. Wen,; T. A. Shifa,; F. M. Wang,; Y. Zhang,; X. Y. Zhan, et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296-6341.
[68]
B. Mortazavi,; O. Rahaman,; M. Makaremi,; A. Dianat,; G. Cuniberti,; T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys. E: Low-dimensional Syst. Nanostructures 2017, 87, 228-232.
[69]
G. Liu,; Z. B. Gao,; J. Zhou, Strain effects on the mechanical properties of group-V monolayers with buckled honeycomb structures. Phys. E: Low-dimensional Syst. Nanostructures 2019, 112, 59-65.
[70]
C. Androulidakis,; K. H. Zhang,; M. Robertson,; S. Tawfick, Tailoring the mechanical properties of 2D materials and heterostructures. 2D Mater. 2018, 5, 032005.
[71]
X. Chang,; H. C. Li,; G. Tang, Tensile mechanical properties and fracture behavior of monolayer InSe under axial tension. Comput. Mater. Sci. 2019, 158, 340-345.
[72]
G. H. Lee,; Y. J. Yu,; X. Cui,; N. Petrone,; C. H. Lee,; M. S. Choi,; D. Y. Lee,; C. Lee,; W. J. Yoo,; K. Watanabe, et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride- graphene heterostructures. ACS Nano 2013, 7, 7931-7936.
[73]
H. Y. Chang,; S. X. Yang,; J. Lee,; L. Tao,; W. S. Hwang,; D. Jena,; N. S. Lu,; D. Akinwande, High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446-5452.
[74]
T. Liu,; S. Liu,; K. H. Tu,; H. Schmidt,; L. Q. Chu,; D. Xiang,; J. Martin,; G. Eda,; C. A. Ross,; S. Garaj, Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223-226.
[75]
S. B. Desai,; S. R. Madhvapathy,; A. B. Sachid,; J. P. Llinas,; Q. X. Wang,; G. H. Ahn,; G. Pitner,; M. J. Kim,; J. Bokor,; C. M. Hu, et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.
[76]
X. Yan,; C. S. Liu,; C. Li,; W. Z. Bao,; S. J. Ding,; D. W. Zhang,; P. Zhou, Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 2017, 13, 1701478.
[77]
Z. X. Guo,; Y. Chen,; H. Zhang,; J. L. Wang,; W. D. Hu,; S. J. Ding,; D. W. Zhang,; P. Zhou,; W. Z. Bao, Independent band modulation in 2D van der Waals heterostructures via a novel device architecture. Adv. Sci. 2018, 5, 1800237.
[78]
S. Y. Wang,; C. S. Chen,; Z. H. Yu,; Y. L. He,; X. Y. Chen,; Q. Wan,; Y. Shi,; D. W. Zhang,; H. Zhou,; X. R. Wang, et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.
[79]
M. W. Si,; C. J. Su,; C. S. Jiang,; N. J. Conrad,; H. Zhou,; K. D. Maize,; G. Qiu,; C. T. Wu,; A. Shakouri,; M. A. Alam, et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 2018, 13, 24-28.
[80]
C. G. Qiu,; F. Liu,; L. Xu,; B. Deng,; M. M. Xiao,; J. Si,; L. Lin,; Z. Y. Zhang,; J. Wang,; H. Guo, et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 2018, 361, 387-392.
[81]
M. Q. Huang,; S. M. Li,; Z. F. Zhang,; X. Xiong,; X. F. Li,; Y. Q. Wu, Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148-1154.
[82]
M. H. Chiu,; H. L. Tang,; C. C. Tseng,; Y. M. Han,; A. Aljarb,; J. K. Huang,; Y. Wan,; J. H. Fu,; X. X. Zhang,; W. H. Chang, et al. Metal-guided selective growth of 2D materials: Demonstration of a bottom-up CMOS inverter. Adv. Mater. 2019, 31, 1900861.
[83]
J. Shim,; S. W. Jang,; J. H. Lim,; H. Kim,; D. H. Kang,; K. H. Kim,; S. Seo,; K. Heo,; C. Shin,; H. Y. Yu, et al. Polarity control in a single transition metal dichalcogenide (TMD) transistor for homogeneous complementary logic circuits. Nanoscale 2019, 11, 12871-12877.
[84]
Z. Y. Lin,; Y. Liu,; U. Halim,; M. N. Ding,; Y. Y. Liu,; Y. L. Wang,; C. C. Jia,; P. Chen,; X. D. Duan,; C. Wang, et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[85]
L. Yu,; D. El-Damak,; S. Ha,; X. Ling,; Y. Lin,; A. Zubair,; Y. Zhang,; Y. H. Lee,; J. Kong,; A. Chandrakasan, et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.
[86]
S. Wachter,; D. K. Polyushkin,; O. Bethge,; T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 2017, 8, 14948.
[87]
X. Hou,; H. W. Chen,; Z. H. Zhang,; S. Y. Wang,; P. Zhou, 2D atomic crystals: A promising solution for next-generation data storage. Adv. Electron. Mater. 2019, 5, 1800944.
[88]
M. Wang,; S. H. Cai,; C. Pan,; C. Y. Wang,; X. J. Lian,; Y. Zhuo,; K. Xu,; T. J. Cao,; X. Q. Pan,; B. G. Wang, et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130-136.
[89]
W. S. Li,; J. Zhou,; S. H. Cai,; Z. H. Yu,; J. L. Zhang,; N. Fang,; T. T. Li,; Y. Wu,; T. S. Chen,; X. Y. Xie, et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2019, 2, 563-571.
[90]
N. Zhan,; M. Olmedo,; G. P. Wang,; J. L. Liu, Graphene based nickel nanocrystal flash memory. Appl. Phys. Lett. 2011, 99, 113112.
[91]
C. S. Liu,; X. Yan,; J. L. Wang,; S. J. Ding,; P. Zhou,; D. W. Zhang, Eliminating overerase behavior by designing energy band in high- speed charge-trap memory based on WSe2. Small 2017, 13, 1604128.
[92]
Z. Y. Lu,; C. Serrao,; A. I. Khan,; J. D. Clarkson,; J. C. Wong,; R. Ramesh,; S. Salahuddin, Electrically induced, non-volatile, metal insulator transition in a ferroelectric-controlled MoS2 transistor. Appl. Phys. Lett. 2018, 112, 043107.
[93]
L. X. Chen,; H. Wang,; B. Hou,; M. Liu,; L. K. Shen,; X. L. Lu,; X. H. Ma,; Y. Hao, Hetero-integration of quasi two-dimensional PbZr0.2Ti0.8O3 on AlGaN/GaN HEMT and non-volatile modulation of two-dimensional electron gas. Appl. Phys. Lett. 2019, 115, 193505.
[94]
G. J. Wu,; B. B. Tian,; L. Liu,; W. Lv,; S. Wu,; X. D. Wang,; Y. Chen,; J. Y. Li,; Z. Wang,; S. Q. Wu, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43-50.
[95]
F. Y. Liao,; Z. X. Guo,; Y. Wang,; Y. F. Xie,; S. M. Zhang,; Y. C. Sheng,; H. W. Tang,; Z. H. Xu,; A. Riaud,; P. Zhou, et al. High- performance logic and memory devices based on a dual-gated MoS2 architecture. ACS Appl. Electron. Mater. 2020, 2, 111-119.
[96]
P. A. Chen,; R. J. Ge,; J. W. Lee,; C. H. Hsu,; W. C. Hsu,; D. Akinwande,; M. H. Chiang, An RRAM with a 2D material embedded double switching layer for neuromorphic computing. In Proceedings of 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Portland, OR, USA, 2018, pp 1-4.
[97]
S. K. Hong,; J. G. Oh,; W. S. Hwang,; B. J. Cho, Enhanced performance in graphene RF transistors via advanced process integration. Semicond. Sci. Technol. 2017, 32, 045009.
[98]
G. Fiori,; G. Iannaccone, Insights on radio frequency bilayer graphene FETs. In Proceedings of 2012 International Electron Devices Meeting, San Francisco, CA, USA, 2012, pp 17.3.1-17.3.4.
[99]
R. Cheng,; S. Jiang,; Y. Chen,; Y. Liu,; N. Weiss,; H. C. Cheng,; H. Wu,; Y. Huang,; X. F. Duan, Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.
[100]
H. Wang,; X. M. Wang,; F. N. Xia,; L. H. Wang,; H. Jiang,; Q. F. Xia,; M. L. Chin,; M. Dubey,; S. J. Han, Black phosphorus radio- frequency transistors. Nano Lett. 2014, 14, 6424-6429.
[101]
S. Singh,; K. Thakar,; N. Kaushik,; B. Muralidharan,; S. Lodha, Performance projections for two-dimensional materials in radio- frequency applications. Phys. Rev. Appl. 2018, 10, 014022.
[102]
C. Gilardi,; P. Pedrinazzi,; K. A. Patel,; L. Anzi,; B. R. Luo,; T. J. Booth,; P. Bøggild,; R. Sordan, Graphene-Si CMOS oscillators. Nanoscale 2019, 11, 3619-3625.
[103]
M. Bonmann,; M. A. Andersson,; Y. X. Zhang,; X. X. Yang,; A. Vorobiev,; J. Stake, An integrated 200-GHz graphene FET based receiver. In Proceedings of 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018, pp 1-3.
[104]
C. T. Cheng,; B. J. Huang,; X. R. Mao,; Z. Y. Zhang,; Z. Zhang,; Z. X. Geng,; P. Xue,; H. D. Chen, A graphene based frequency quadrupler. Sci. Rep. 2017, 7, 46605.
[105]
F. Schedin,; A. K. Geim,; S. V. Morozov,; E. W. Hill,; P. Blake,; M. I. Katsnelson,; K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.
[106]
T. Järvinen,; G. S. Lorite,; J. Peräntie,; G. Toth,; S. Saarakkala,; V. K. Virtanen,; K. Kordas, WS2 and MoS2 thin film gas sensors with high response to NH3 in air at low temperature. Nanotechnology 2019, 30, 405501.
[107]
J. Baek,; D. M. Yin,; N. Liu,; I. Omkaram,; C. Jung,; H. Im,; S. Hong,; S. M. Kim,; Y. K. Hong,; J. Hur, et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD- grown MoSe2 films. Nano Res. 2017, 10, 1861-1871.
[108]
Q. Li,; Y. Cen,; J. Y. Huang,; X. J. Li,; H. Zhang,; Y. F. Geng,; B. I. Yakobson,; Y. Du,; X. Q. Tian, Zinc oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horiz. 2018, 3, 525-531.
[109]
M. Rodner,; D. Puglisi,; S. Ekeroth,; U. Helmersson,; I. Shtepliuk,; R. Yakimova,; A. Skallberg,; K. Uvdal,; A. Schütze,; J. Eriksson, Graphene decorated with iron oxide nanoparticles for highly sensitive interaction with volatile organic compounds. Sensors 2019, 19, 918.
[110]
H. Song,; X. Li,; P. Cui,; S. X. Guo,; W. H. Liu,; X. L. Wang, Morphology optimization of CVD graphene decorated with Ag nanoparticles as ammonia sensor. Sens. Actuators B Chem. 2017, 244, 124-130.
[111]
T. Xie,; G. Z. Xie,; Y. J. Su,; H. F. Du,; Z. B. Ye,; Y. D. Jiang, Ammonia gas sensors based on poly (3-hexylthiophene)-molybdenum disulfide film transistors. Nanotechnology 2016, 27, 065502.
[112]
G. Deokar,; P. Vancsó,; R. Arenal,; F. Ravaux,; J. Casanova-Cháfer,; E. Llobet,; A. Makarova,; D. Vyalikh,; C. Struzzi,; P. Lambin, et al. MoS2-carbon nanotube hybrid material growth and gas sensing. Adv. Mater. Interfaces 2017, 4, 1700801.
[113]
J. X. Liu,; X. H. Chen,; Q. Q. Wang,; M. M. Xiao,; D. L. Zhong,; W. Sun,; G. Y. Zhang,; Z. Y. Zhang, Ultrasensitive monolayer MoS2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. 2019, 19, 1437-1444.
[114]
P. Li,; B. J. Liu,; D. Z. Zhang,; Y. E. Sun,; J. J. Liu, Graphene field-effect transistors with tunable sensitivity for high performance Hg(II) sensing. Appl. Phys. Lett. 2016, 109, 153101.
[115]
S. Mao,; H. P. Pu,; J. B. Chang,; X. Y. Sui,; G. H. Zhou,; R. Ren,; Y. T. Chen,; J. H. Chen, Ultrasensitive detection of orthophosphate ions with reduced graphene oxide/ferritin field-effect transistor sensors. Environ. Sci. Nano 2017, 4, 856-863.
[116]
P. Li,; D. Z. Zhang,; Y. E. Sun,; H. Y. Chang,; J. J. Liu,; N. L. Yin, Towards intrinsic MoS2 devices for high performance arsenite sensing. Appl. Phys. Lett. 2016, 109, 063110.
[117]
G. H. Zhou,; J. B. Chang,; H. H. Pu,; K. Y. Shi,; S. Mao,; X. Y. Sui,; R. Ren,; S. M. Cui,; J. H. Chen, Ultrasensitive mercury ion detection using DNA-functionalized molybdenum disulfide nanosheet/gold nanoparticle hybrid field-effect transistor device. ACS Sens. 2016, 1, 295-302.
[118]
G. H. Zhou,; H. H. Pu,; J. B. Chang,; X. Y. Sui,; S. Mao,; J. H. Chen, Real-time electronic sensor based on black phosphorus/Au NPs/DTT hybrid structure: Application in arsenic detection. Sens. Actuators B Chem. 2018, 257, 214-219.
[119]
G. E. Fenoy,; W. A. Marmisollé,; O. Azzaroni,; W. Knoll, Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosens. Bioelectron. 2020, 148, 111796.
[120]
X. Y. Chen,; S. B. Hao,; B. Y. Zong,; C. B. Liu,; S. Mao, Ultraselective antibiotic sensing with complementary strand DNA assisted aptamer/MoS2 field-effect transistors. Biosens. Bioelectron. 2019, 145, 111711.
[121]
J. J. Shan,; J. H. Li,; X. Y. Chu,; M. Z. Xu,; F. J. Jin,; X. J. Wang,; L. Ma,; X. Fang,; Z. P. Wei,; X. H. Wang, High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 2018, 8, 7942-7948.
[122]
Y. T. Chen,; R. Ren,; H. H. Pu,; J. B. Chang,; S. Mao,; J. H. Chen, Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 2017, 89, 505-510.
[123]
I. J. Park,; T. I. Kim,; S. M. Kang,; G. W. Shim,; Y. Woo,; T. S. Kim,; S. Y. Choi, Stretchable thin-film transistors with molybdenum disulfide channels and graphene electrodes. Nanoscale 2018, 10, 16069-16078.
[124]
W. G. Song,; H. J. Kwon,; J. Park,; J. Yeo,; M. Kim,; S. Park,; S. Yun,; K. U. Kyung,; C. P. Grigoropoulos,; S. Kim, et al. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426-2434.
[125]
Y. Y. Gong,; V. Carozo,; H. Y. Li,; M. Terrones,; T. N. Jackson, High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide. 2D Mater. 2016, 3, 021008.
[126]
H. Park,; D. S. Oh,; K. J. Lee,; D. Y. Jung,; S. Lee,; S. Yoo,; S. Y. Choi, Flexible and transparent thin-film transistors based on two- dimensional materials for active-matrix display. ACS Appl. Mater. Interfaces 2020, 12, 4749-4754.
[127]
J. Pu,; K. Funahashi,; C. H. Chen,; M. Y. Li,; L. J. Li,; T. Takenobu, Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111-4119.
[128]
H. Y. Chang,; M. N. Yogeesh,; R. Ghosh,; A. Rai,; A. Sanne,; S. X. Yang,; N. S. Lu,; S. K. Banerjee,; D. Akinwande, Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 2016, 28, 1818-1823.
[129]
S. Park,; S. H. Shin,; M. N. Yogeesh,; A. L. Lee,; S. Rahimi,; D. Akinwande, Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 2016, 37, 512-515.
[130]
S. Park,; D. Akinwande, First demonstration of high performance 2D monolayer transistors on paper substrates. In Proceedings of 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp 5.2.1-5.2.4.
[131]
H. Y. Guo,; C. Y. Lan,; Z. F. Zhou,; P. H. Sun,; D. P. Wei,; C. Li, Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246-6253.
[132]
Y. X. Zhao,; J. G. Song,; G. H. Ryu,; K. Y. Ko,; W. J. Woo,; Y. Kim,; D. Kim,; J. H. Lim,; S. Lee,; Z. Lee, et al. Low-temperature synthesis of 2D MoS2 on a plastic substrate for a flexible gas sensor. Nanoscale 2018, 10, 9338-9345.
[133]
G. Yoo,; H. Park,; M. Kim,; W. G. Song,; S. Jeong,; M. H. Kim,; H. Lee,; S. W. Lee,; Y. K. Hong,; M. G. Lee, et al. Real-time electrical detection of epidermal skin MoS2 biosensor for point-of-care diagnostics. Nano Res. 2017, 10, 767-775.
[134]
P. P. Zhang,; S. Yang,; R. Pineda-Gómez,; B. Ibarlucea,; J. Ma,; M. R. Lohe,; T. F. Akbar,; L. Baraban,; G. Cuniberti,; X. L. Feng, Electrochemically exfoliated high-quality 2H-MoS2 for multiflake thin film flexible biosensors. Small 2019, 15, 1901265.
[135]
L. Zhou,; C. Liu,; Z. B. Sun,; H. J. Mao,; L. Zhang,; X. F. Yu,; J. L. Zhao,; X. F. Chen, Black phosphorus based fiber optic biosensor for ultrasensitive cancer diagnosis. Biosens. Bioelectron. 2019, 137, 140-147.
[136]
H. Yoon,; J. Nah,; H. Kim,; S. Ko,; M. Sharifuzzaman,; S. C. Barman,; X. Xuan,; J. Kim,; J. Y. Park, A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sens. Actuators B Chem. 2020, 311, 127866.
[137]
Z. B. Ye,; H. L. Tai,; T. Xie,; Z. Yuan,; C. H. Liu,; Y. D. Jiang, Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B Chem. 2016, 223, 149-156.
[138]
D. Krasnozhon,; D. Lembke,; C. Nyffeler,; Y. Leblebici,; A. Kis, MoS2 transistors operating at gigahertz frequencies. Nano Lett. 2014, 14, 5905-5911.
[139]
D. Krasnozhon,; S. Dutta,; C. Nyffeler,; Y. Leblebici,; A. Kis, High-frequency, scaled MoS2 transistors. In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015, pp 27.4.1-27.4.4.
[140]
F. Schwierz, Industry-compatible graphene transistors. Nature 2011, 472, 41-42.
[141]
Y. Wu,; X. M. Zou,; M. L. Sun,; Z. Y. Cao,; X. R. Wang,; S. Huo,; J. J. Zhou,; Y. Yang,; X. X. Yu,; Y. C. Kong, et al. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl. Mater. Interfaces 2016, 8, 25645-25649.
Nano Research
Pages 1752-1767
Cite this article:
Zeng S, Tang Z, Liu C, et al. Electronics based on two-dimensional materials: Status and outlook. Nano Research, 2021, 14(6): 1752-1767. https://doi.org/10.1007/s12274-020-2945-z
Topics:
Part of a topical collection:

1218

Views

72

Crossref

N/A

Web of Science

75

Scopus

4

CSCD

Altmetrics

Received: 01 May 2020
Revised: 08 June 2020
Accepted: 19 June 2020
Published: 13 July 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return