AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (9.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticles

Alexander Schiffmann1( )Thomas Jauk1Daniel Knez2Harald Fitzek2Ferdinand Hofer2Florian Lackner1Wolfgang E. Ernst1( )
Institute of Experimental Physics, Graz University of Technology, A-8010 Graz, Austria
Institute of Electron Microscopy and Nanoanalysis & Graz Centre for Electron Microscopy, Graz University of Technology, A-8010 Graz, Austria
Show Author Information

Graphical Abstract

Abstract

Plasmonic Ag@ZnO core@shell nanoparticles are formed by synthesis inside helium droplets with subsequent deposition and controlled oxidation. The particle size and shape can be controlled from spherical sub-10 nm particles to larger elongated structures. An advantage of the method is the complete absence of solvents, precursors, and other chemical agents. The obtained particle morphology and elemental composition have been analyzed by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS). The results reveal that the produced particles form a closed and homogeneous ZnO layer around a 2-3 nm Ag core with a uniform thickness of (1.33 ± 0.15) nm and (1.63 ± 0.31) nm for spherical and wire-like particles, respectively. The results are supported by ultraviolet photoelectron spectroscopy (UPS), which indicates a fully oxidized shell layer for the particles studied by STEM. The plasmonic properties of the produced spherical Ag@ZnO core@shell particles are investigated by two-photon photoelectron (2PPE) spectroscopy. Upon excitation of the localized surface plasmon resonance in Ag at around 3 eV, plasmonic enhancement leads to the liberation of electrons with high kinetic energy. This is observed for both Ag and Ag@ZnO particles, showing that even if a Ag cluster is covered by the ZnO layer, a plasmonic enhancement can be observed by photoelectron spectroscopy.

Electronic Supplementary Material

Download File(s)
12274_2020_2961_MOESM1_ESM.pdf (2.1 MB)

References

[1]
Ong, C. B.; Ng, L. Y.; Mohammad, A. W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sust. Energy Rev. 2018, 81, 536-551.
[2]
Qi, K. H.; Cheng, B.; Yu, J. G.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 2017, 727, 792-820.
[3]
Mishra, S. K.; Srivastava, R. K.; Prakash, S. G.; Yadav, R. S.; Panday, A. C. Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-Electron. Rev. 2010, 18, 467-473.
[4]
Özgür, Ü.; Hofstetter, D.; Morkoç, H. ZnO devices and applications: A review of current status and future prospects. Proc. IEEE 2010, 98, 1255-1268.
[5]
Wang, W. W.; Zhu, Y. J. Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt. Inorg. Chem. Commun. 2004, 7, 1003-1005.
[6]
Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833-2881.
[7]
Ghanbari Shohany, B.; Khorsand Zak, A. Doped ZnO nanostructures with selected elements - Structural, morphology and optical properties: A review. Ceram. Int. 2020, 46, 5507-5520.
[8]
Georgekutty, R.; Seery, M. K.; Pillai, S. C. A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C 2008, 112, 13563-13570.
[9]
Xiao, M. D.; Jiang, R. B.; Wang, F.; Fang, C. H.; Wang, J. F.; Yu, J. C. Plasmon-enhanced chemical reactions. J. Mater. Chem. A 2013, 1, 5790-5805.
[10]
Gomez, L. F.; Loginov, E.; Sliter, R.; Vilesov, A. F. Sizes of large He droplets. J. Chem. Phys. 2011, 135, 154201.
[11]
Gomez, L. F.; Ferguson, K. R.; Cryan, J. P.; Bacellar, C.; Tanyag, R. M. P.; Jones, C.; Schorb, S.; Anielski, D.; Belkacem, A.; Bernando, C. et al. Shapes and vorticities of superfluid helium nanodroplets. Science 2014, 345, 906-909.
[12]
Mozhayskiy, V.; Slipchenko, M. N.; Adamchuk, V. K.; Vilesov, A. F. Use of helium nanodroplets for assembly, transport, and surface deposition of large molecular and atomic clusters. J. Chem. Phys. 2007, 127, 094701.
[13]
Boatwright, A.; Feng, C.; Spence, D.; Latimer, E.; Binns, C.; Ellis, A. M.; Yang, S. F. Helium droplets: A new route to nanoparticles. Faraday Discuss. 2013, 162, 113-124.
[14]
Volk, A.; Thaler, P.; Koch, M.; Fisslthaler, E.; Grogger, W.; Ernst, W. E. High resolution electron microscopy of Ag-clusters in crystalline and non-crystalline morphologies grown inside superfluid helium nanodroplets. J. Chem. Phys. 2013, 138, 214312.
[15]
Thaler, P.; Volk, A.; Knez, D.; Lackner, F.; Haberfehlner, G.; Steurer, J.; Schnedlitz, M.; Ernst, W. E. Synthesis of nanoparticles in helium droplets - A characterization comparing mass-spectra and electron microscopy data. J. Chem. Phys. 2015, 143, 134201.
[16]
Toennies, J. P.; Vilesov, A. F. Superfluid helium droplets: A uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem., Int. Ed. 2004, 43, 2622-2648.
[17]
Callegari, C.; Ernst, W. E. Helium Droplets as nanocryostats for molecular spectroscopy - from the vacuum ultraviolet to the microwave regime. In: Handbook of High-Resolution Spectroscopy. John Wiley & Sons, Inc.: New York, 2011; pp 1551-1594.
[18]
Yang, S. F.; Ellis, A. M.; Spence, D.; Feng, C.; Boatwright, A.; Latimer, E.; Binns, C. Growing metal nanoparticles in superfluid helium. Nanoscale 2013, 5, 11545-11553.
[19]
Hauser, A. W.; Volk, A.; Thaler, P.; Ernst, W. E. Atomic collisions in suprafluid helium-nanodroplets: Timescales for metal-cluster formation derived from He-density functional theory. Phys. Chem. Chem. Phys. 2015, 17, 10805-10812.
[20]
Volk, A.; Thaler, P.; Knez, D.; Hauser, A. W.; Steurer, J.; Grogger, W.; Hofer, F.; Ernst, W. E. The impact of doping rates on the morphologies of silver and gold nanowires grown in helium nanodroplets. Phys. Chem. Chem. Phys. 2016, 18, 1451-1459.
[21]
Gomez, L. F.; Loginov, E.; Vilesov, A. F. Traces of vortices in superfluid helium droplets. Phys. Rev. Lett. 2012, 108, 155302.
[22]
Gessner, O.; Vilesov, A. F. Imaging quantum vortices in superfluid helium droplets. Annu. Rev. Phys. Chem. 2019, 70, 173-198.
[23]
Sergeev, Y. A.; Barenghi, C. F. Particles-vortex interactions and flow visualization in 4He. J. Low Temp. Phys. 2009, 157, 429.
[24]
Gordon, E.; Karabulin, A.; Matyushenko, V.; Sizov, V.; Khodos, I. Stability and structure of nanowires grown from silver, copper and their alloys by laser ablation into superfluid helium. Phys. Chem. Chem. Phys. 2014, 16, 25229-25233.
[25]
Schnedlitz, M.; Lasserus, M.; Knez, D.; Hauser, A. W.; Hofer, F.; Ernst, W. E. Thermally induced breakup of metallic nanowires: Experiment and theory. Phys. Chem. Chem. Phys. 2017, 19, 9402-9408.
[26]
Lasserus, M.; Schnedlitz, M.; Knez, D.; Messner, R.; Schiffmann, A.; Lackner, F.; Hauser, A. W.; Hofer, F.; Ernst, W. E. Thermally induced alloying processes in a bimetallic system at the nanoscale: AgAu sub-5 nm core-shell particles studied at atomic resolution. Nanoscale 2018, 10, 2017-2024.
[27]
Schiffmann, A.; Knez, D.; Lackner, F.; Lasserus, M.; Messner, R.; Schnedlitz, M.; Kothleitner, G.; Hofer, F.; Ernst, W. E. Ultra-thin h-BN substrates for nanoscale plasmon spectroscopy. J. Appl. Phys. 2019, 125, 023104.
[28]
Thaler, P.; Volk, A.; Lackner, F.; Steurer, J.; Knez, D.; Grogger, W.; Hofer, F.; Ernst, W. E. Formation of bimetallic core-shell nanowires along vortices in superfluid He nanodroplets. Phys. Rev. B 2014, 90, 155442.
[29]
Lackner, F.; Schiffmann, A.; Lasserus, M.; Messner, R.; Schnedlitz, M.; Fitzek, H.; Pölt, P.; Knez, D.; Kothleitner, G.; Ernst, W. E. Helium nanodroplet assisted synthesis of bimetallic Ag@Au nanoparticles with tunable localized surface plasmon resonance. Eur. Phys. J. D 2019, 73, 104.
[30]
Lasserus, M.; Knez, D.; Schnedlitz, M.; Hauser, A. W.; Hofer, F.; Ernst, W. E. On the passivation of iron particles at the nanoscale. Nanoscale Adv. 2019, 1, 2276-2283.
[31]
Thaler, P.; Volk, A.; Ratschek, M.; Koch, M.; Ernst, W. E. Molecular dynamics simulation of the deposition process of cold Ag-clusters under different landing conditions. J. Chem. Phys. 2014, 140, 044326.
[32]
de Lara-Castells, M. P.; Aguirre, N. F.; Stoll, H.; Mitrushchenkov, A. O.; Mateo, D.; Pi, M. Communication: Unraveling the 4He droplet- mediated soft-landing from ab initio-assisted and time-resolved density functional simulations: Au@4He300/TiO2(110). J. Chem. Phys. 2015, 142, 131101.
[33]
Haberfehlner, G.; Thaler, P.; Knez, D.; Volk, A.; Hofer, F.; Ernst, W. E.; Kothleitner, G. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography. Nat. Commun. 2015, 6, 8779.
[34]
He, M.; Protesescu, L.; Caputo, R.; Krumeich, F.; Kovalenko, M. V. A general synthesis strategy for monodisperse metallic and metalloid nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and their alloys) via in situ formed metal long-chain amides. Chem. Mater. 2015, 27, 635-647.
[35]
Walther, T.; Humphreys, C. J. A quantitative study of compositional profiles of chemical vapour-deposited strained silicon-germanium/ silicon layers by transmission electron microscopy. J. Cryst. Growth 1999, 197, 113-128.
[36]
Schreyer, M.; Guo, L.; Thirunahari, S.; Gao, F.; Garland, M. Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. J. Appl. Cryst. 2014, 47, 659-667.
[37]
Prieur, D.; Bonani, W.; Popa, K.; Walter, O.; Kriegsman, K. W.; Engelhard, M. H.; Guo, X. F.; Eloirdi, R.; Gouder, T.; Beck, A. et al. Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles. Inorg. Chem. 2020, 59, 5760-5767.
[38]
Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676-682.
[39]
Lehmann, J.; Merschdorf, M.; Pfeiffer, W.; Thon, A.; Voll, S.; Gerber, G. Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission. Phys. Rev. Lett. 2000, 85, 2921-2924.
[40]
Evans, S. Energy calibration secondary standards for X-ray photoelectron spectrometers. Surf. Interface Anal. 1985, 7, 299-302.
[41]
Gaarenstroom, S. W.; Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 1977, 67, 3500-3506.
[42]
Ley, L.; Kowalczyk, S. P.; McFeely, F. R.; Pollak, R. A.; Shirley, D. A. X-Ray photoemission from zinc: Evidence for extra-atomic relaxation via semilocalized excitons. Phys. Rev. B 1973, 8, 2392-2402.
[43]
Schön, G. Auger and direct electron spectra in X-ray photoelectron studies of zinc, zinc oxide, gallium and gallium oxide. J. Electron Spectrosc. Relat. Phenom. 1973, 2, 75-86.
[44]
Gutmann, S.; Conrad, M.; Wolak, M. A.; Beerbom, M. M.; Schlaf, R. Work function measurements on nano-crystalline zinc oxide surfaces. J. Appl. Phys. 2012, 111, 123710.
[45]
Seah, M. P.; Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2-11.
[46]
Misra, M.; Kapur, P.; Nayak, M. K.; Singla, M. Synthesis and visible photocatalytic activities of a Au@Ag@ZnO triple layer core-shell nanostructure. New J. Chem. 2014, 38, 4197-4203.
[47]
Aranishi, K.; Jiang, H. L.; Akita, T.; Haruta, M.; Xu, Q. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core- shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res. 2011, 4, 1233-1241.
[48]
Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H. Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 9368-9372.
[49]
LaGrow, A. P.; Lloyd, D. C.; Gai, P. L.; Boyes, E. D. In situ scanning transmission electron microscopy of Ni nanoparticle redispersion via the reduction of hollow NiO. Chem. Mater. 2018, 30, 197-203.
[50]
Munzinger, M.; Wiemann, C.; Rohmer, M.; Guo, L.; Aeschlimann, M.; Bauer, M. The lateral photoemission distribution from a defined cluster/substrate system as probed by photoemission electron microscopy. New J. Phys. 2005, 7, 68.
[51]
Rohmer, M.; Ghaleh, F.; Aeschlimann, M.; Bauer, M.; Hövel, H. Mapping the femtosecond dynamics of supported clusters with nanometer resolution. Eur. Phys. J. D 2007, 45, 491-499.
[52]
Knapp, A. G. Surface potentials and their measurement by the diode method. Surf. Sci. 1973, 34, 289-316.
[53]
Evers, F.; Rakete, C.; Watanabe, K.; Menzel, D.; Freund, H. J. Two- photon photoemission from silver nanoparticles on thin alumina films: Role of plasmon excitation. Surf. Sci. 2005, 593, 43-48.
Nano Research
Pages 2979-2986
Cite this article:
Schiffmann A, Jauk T, Knez D, et al. Helium droplet assisted synthesis of plasmonic Ag@ZnO core@shell nanoparticles. Nano Research, 2020, 13(11): 2979-2986. https://doi.org/10.1007/s12274-020-2961-z
Topics:

1014

Views

23

Downloads

12

Crossref

N/A

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 21 February 2020
Revised: 26 June 2020
Accepted: 27 June 2020
Published: 27 July 2020
© The Author(s) 2020

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return