AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Strong electron-ion coupling in gradient halide perovskite heterojunction

Hongye Chen§Liaoyu Wang§Chun ShenJiahuan ZhangWanlin Guo( )
State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

§ Hongye Chen and Liaoyu Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The electron-ion coupling in iontronics has great significance and potential for energy conversion and storage devices. However, it is a substantial challenge to integrate iontronics into all-solid-state semiconductor circuits and explore the electron-ion coupling in semiconductor devices. Here, by utilizing the organic-inorganic halide perovskite, we fabricate a planar heterojunction with a gradient distribution of halide anions. The diode-like halide migration was investigated by bias voltage induced asymmetric blue shift in photoluminescence spectrum. This pseudo-ionic diode behaviour was found to result from asymmetric charge injection characterized by I-V curves and gradient-halides-induced vacancy hopping indicated by energy dispersive spectroscopy (EDS). The planar gradient perovskite heterojunction provides a viable route for extending iontronic devices into the regime of all-solid-state semiconductors.

Electronic Supplementary Material

Download File(s)
12274_2020_3143_MOESM1_ESM.pdf (2.5 MB)

References

[1]
M. Watanabe,; M. L. Thomas,; S. Zhang,; K. Ueno,; T. Yasuda,; K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 2017, 117, 7190-7239.
[2]
Z. J. Zhu,; R. Y. Li,; T. R. Pan, Imperceptible epidermal-iontronic interface for wearable sensing. Adv. Mater. 2018, 30, 1705122.
[3]
C. H. Yang,; Z. G. Suo, Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125-142.
[4]
S. Li,; N. Pan,; Z. J. Zhu,; R. Y. Li,; B. Q. Li,; J. R. Chu,; G. L. Li,; Y. Chang,; T. R. Pan, All-in-one iontronic sensing paper. Adv. Funct. Mater. 2019, 29, 1807343.
[5]
X. D. Huang,; X. Y. Kong,; L. P. Wen,; L. Jiang, Bioinspired ionic diodes: From unipolar to bipolar. Adv. Funct. Mater. 2018, 28, 1801079.
[6]
Z. Zhang,; L. P. Wen,; L. Jiang, Bioinspired smart asymmetric nanochannel membranes. Chem. Soc. Rev. 2018, 47, 322-356.
[7]
K. Xiao,; L. Chen,; Z. Zhang,; G. H. Xie,; P. Li,; X. Y. Kong,; L. P. Wen,; L. Jiang, A tunable ionic diode based on a biomimetic structure- tailorable nanochannel. Angew. Chem., Int. Ed. 2017, 56, 8168-8172.
[8]
W. H. Guan,; R. Fan,; M. A. Reed, Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2011, 2, 506.
[9]
W. W. Fei,; M. M. Xue,; H. Qiu,; W. L. Guo, Heterogeneous graphene oxide membrane for rectified ion transport. Nanoscale 2019, 11, 1313-1318.
[10]
K. Xiao,; G. H. Xie,; Z. Zhang,; X. Y. Kong,; Q. Liu,; P. Li,; L. P. Wen,; L. Jiang, Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region. Adv. Mater. 2016, 28, 3345-3350.
[11]
S. Howorka, Building membrane nanopores. Nat. Nanotechnol. 2017, 12, 619-630.
[12]
T. Arbring Sjöström,; M. Berggren,; E. O. Gabrielsson,; P. Janson,; D. J. Poxson,; M. Seitanidou,; D. T. Simon, A decade of iontronic delivery devices. Adv. Mater. Technol. 2018, 3, 1700360.
[13]
D. B. Strukov,; J. L. Borghetti,; R. S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 2009, 5, 1058-1063.
[14]
S. Perera,; H. L. Hui,; C. Zhao,; H. T. Xue,; F. Sun,; C. H. Deng,; N. Gross,; C. Milleville,; X. H. Xu,; D. F. Watson, et al. Chalcogenide perovskites-An emerging class of ionic semiconductors. Nano Energy 2016, 22, 129-135.
[15]
J. Gao,; W. Guo,; D. Feng,; H. T. Wang,; D. Y. Zhao,; L. Jiang, High- performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
[16]
E. Choi,; C. Wang,; G. T. Chang,; J. Park, High current ionic diode using homogeneously charged asymmetric nanochannel network membrane. Nano Lett. 2016, 16, 2189-2197.
[17]
J. Gao,; Y. P. Feng,; W. Guo,; L. Jiang, Nanofluidics in two-dimensional layered materials: Inspirations from nature. Chem. Soc. Rev. 2017, 46, 5400-5424.
[18]
P. F. Wang,; M. Wang,; F. Liu,; S. Y. Ding,; X. Wang,; G. H. Du,; J. Liu,; P. Apel,; P. Kluth,; C. Trautmann, et al. Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 2018, 9, 569.
[19]
R. H. Tunuguntla,; R. Y. Henley,; Y. C. Yao,; T. A. Pham,; M. Wanunu,; A. Noy, Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792-796.
[20]
S. D. Stranks,; H. J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391-402.
[21]
Z. K. Tan,; R. S. Moghaddam,; M. L. Lai,; P. Docampo,; R. Higler,; F. Deschler,; M. Price,; A. Sadhanala,; L. M. Pazos,; D. Credgington, et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
[22]
A. Walsh,; S. D. Stranks, Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 2018, 3, 1983-1990.
[23]
T. Y. Yang,; G. Gregori,; N. Pellet,; M. Grätzel,; J. Maier, The significance of ion conduction in a hybrid organic-inorganic lead- iodide-based perovskite photosensitizer. Angew. Chem. 2015, 127, 8016-8021.
[24]
Y. B. Yuan,; T. Li,; Q. Wang,; J. Xing,; A. Gruverman,; J. S. Huang, Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells. Sci. Adv. 2017, 3, e1602164.
[25]
J. H. Zhang,; Z. W. Wang,; A. Mishra,; M. L. Yu,; M. Shasti,; W. Tress,; D. J. Kubicki,; C. E. Avalos,; H. Z. Lu,; Y. H. Liu, et al. Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule 2020, 4, 507-508.
[26]
Y. Hou,; E. Aydin,; M. De Bastiani,; C. X. Xiao,; F. H. Isikgor,; D. J. Xue,; B. Chen,; H. Chen,; B. Bahrami,; A. H. Chowdhury, et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 2020, 367, 1135-1140.
[27]
B. Bahrami,; A. H. Chowdhury,; A. Gurung,; S. Mabrouk,; K. M. Reza,; S. I. Rahman,; R. Pathak,; Q. Q. Qiao, Nanoscale spatial mapping of charge carrier dynamics in perovskite solar cells. Nano Today 2020, 33, 100874.
[28]
B. Bahrami,; S. Mabrouk,; N. Adhikari,; H. Elbohy,; A. Gurung,; K. M. Reza,; R. Pathak,; A. H. Chowdhury,; G. Saianand,; W. J. Yue, et al. Nanoscale control of grain boundary potential barrier, dopant density and filled trap state density for higher efficiency perovskite solar cells. InfoMat 2020, 2, 409-423.
[29]
C. Eames,; J. M. Frost,; P. R. F. Barnes,; B. C. O’Regan,; A. Walsh,; M. S. Islam, Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 2015, 6, 7497.
[30]
J. Kim,; S. H. Lee,; J. H. Lee,; K. H. Hong, The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 2014, 5, 1312-1317.
[31]
F. Wu,; B. Bahrami,; K. Chen,; S. Mabrouk,; R. Pathak,; Y. H. Tong,; X. Y. Li,; T. S. Zhang,; R. H. Jian,; Q. Q. Qiao, Bias-dependent normal and inverted J-V hysteresis in perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 25604-25613.
[32]
F. Wu,; R. Pathak,; K. Chen,; G. Q. Wang,; B. Bahrami,; W. H. Zhang,; Q. Q. Qiao, Inverted current-voltage hysteresis in perovskite solar cells. ACS Energy Lett. 2018, 3, 2457-2460.
[33]
Y. B. Yuan,; J. S. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 2016, 49, 286-293.
[34]
W. J. Chen,; W. X. Mao,; U. Bach,; B. H. Jia,; X. M. Wen, Tracking dynamic phase segregation in mixed-halide perovskite single crystals under two-photon scanning laser illumination. Small Methods 2019, 3, 1900273.
[35]
I. L. Braly,; R. J. Stoddard,; A. Rajagopal,; A. R. Uhl,; J. K. Katahara,; A. K. Y. Jen,; H. W. Hillhouse, Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2017, 2, 1841-1847.
[36]
H. C. Zhang,; X. Fu,; Y. Tang,; H. Wang,; C. F. Zhang,; W. W. Yu,; X. Y. Wang,; Y. Zhang,; M. Xiao, Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 2019, 10, 1088.
[37]
M. C. Brennan,; S. Draguta,; P. V. Kamat,; M. Kuno, Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2018, 3, 204-213.
[38]
S. Draguta,; O. Sharia,; S. J. Yoon,; M. C. Brennan,; Y. V. Morozov,; J. S. Manser,; P. V. Kamat,; W. F. Schneider,; M. Kuno, Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. Nat. Commun. 2017, 8, 200.
[39]
C. Z. Ning,; L. T. Dou,; P. D. Yang, Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.
[40]
N. Pellet,; J. Teuscher,; J. Maier,; M. Grätzel, Transforming hybrid organic inorganic perovskites by rapid halide exchange. Chem. Mater. 2015, 27, 2181-2188.
[41]
J. H. Noh,; S. H. Im,; J. H. Heo,; T. N. Mandal,; S. I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764-1769.
[42]
Z. G. Xiao,; Y. B. Yuan,; Y. C. Shao,; Q. Wang,; Q. F. Dong,; C. Bi,; P. Sharma,; A. Gruverman,; J. S. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 2015, 14, 193-198.
[43]
S. Ahmad,; C. George,; D. J. Beesley,; J. J. Baumberg,; M. De Volder, Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 2018, 18, 1856-1862.
[44]
H. P. Xie,; X. L. Liu,; L. Lyu,; D. M. Niu,; Q. Wang,; J. S. Huang,; Y. L. Gao, Effects of precursor ratios and annealing on electronic structure and surface composition of CH3NH3PBI3 perovskite films. J. Phys. Chem. C 2016, 120, 215-220.
[45]
E. Mosconi,; A. Amat,; K. Nazeeruddin,; M. Grätzel,; F. De Angelis, First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 2013, 117, 13902-13913.
[46]
W. Peng,; L. F. Wang,; B. Murali,; K. T. Ho,; A. Bera,; N. Cho,; C. F. Kang,; V. M. Burlakov,; J. Pan,; L. Sinatra, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 2016, 28, 3383-3390.
[47]
A. Y. Mei,; X. Li,; L. F. Liu,; Z. L. Ku,; T. F. Liu,; Y. G. Rong,; M. Xu,; M. Hu,; J. Z. Chen,; Y. Yang, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295-298.
[48]
S. S. Mali,; C. K. Hong,; A. I. Inamdar,; H. Im,; S. E. Shim, Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO2 electron transporting layers. Nanoscale 2017, 9, 3095-3104.
[49]
L. Atourki,; E. Vega,; B. Marí,; M. Mollar,; H. A. Ahsaine,; K. Bouabid,; A. Ihlal, Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPBI3−XBRX (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 2016, 371, 112-117.
[50]
D. W. deQuilettes,; W. Zhang,; V. M. Burlakov,; D. J. Graham,; T. Leijtens,; A. Osherov,; V. Bulović,; H. J. Snaith,; D. S. Ginger,; S. D. Stranks, Photo-induced halide redistribution in organic-inorganic perovskite films. Nat. Commun. 2016, 7, 11683.
[51]
Y. Z. Wu,; X. D. Yang,; W. Chen,; Y. F. Yue,; M. L. Cai,; F. X. Xie,; E. B. Bi,; A. Islam,; L. Y. Han, Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.
[52]
M. C. Kim,; B. J. Kim,; D. Y. Son,; N. G. Park,; H. S. Jung,; M. Choi, Observation of enhanced hole extraction in Br concentration gradient perovskite materials. Nano Lett. 2016, 16, 5756-5763.
[53]
W. M. Tian,; J. Leng,; C. Y. Zhao,; S. Y. Jin, Long-distance charge carrier funneling in perovskite nanowires enabled by built-in halide gradient. J. Am. Chem. Soc. 2017, 139, 579-582.
[54]
W. Y. Nie,; J. C. Blancon,; A. J. Neukirch,; K. Appavoo,; H. Tsai,; M. Chhowalla,; M. A. Alam,; M. Y. Sfeir,; C. Katan,; J. Even, et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 2016, 7, 11574.
[55]
D. Bae,; A. Palmstrom,; K. Roelofs,; B. T. Mei,; I. Chorkendorff,; S. F. Bent,; P. C. K. Vesborg, Tailoring mixed-halide, wide-gap perovskites via multistep conversion process. ACS Appl. Mater. Interfaces 2016, 8, 14301-14306.
[56]
D. Meggiolaro,; S. G. Motti,; E. Mosconi,; A. J. Barker,; J. Ball,; C. A. Andrea Riccardo Perini,; F. Deschler,; A. Petrozza,; F. De Angelis, Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 2018, 11, 702-713.
[57]
P. Vashishtha,; J. E. Halpert, Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 2017, 29, 5965-5973.
[58]
C. H. Zhou,; Q. D. Ou,; W. J. Chen,; Z. X. Gan,; J. Wang,; Q. L. Bao,; X. M. Wen,; B. H. Jia, Illumination-induced halide segregation in gradient bandgap mixed-halide perovskite nanoplatelets. Adv. Opt. Mater. 2018, 6, 1801107.
[59]
X. J. Zhu,; J. Lee,; W. D. Lu, Iodine vacancy redistribution in organic-inorganic halide perovskite films and resistive switching effects. Adv. Mater. 2017, 29, 1700527.
[60]
A. Ruth,; M. C. Brennan,; S. Draguta,; Y. V. Morozov,; M. Zhukovskyi,; B. Janko,; P. Zapol,; M. Kuno, Vacancy-mediated anion photosegregation kinetics in mixed halide hybrid perovskites: Coupled kinetic monte carlo and optical measurements. ACS Energy Lett. 2018, 3, 2321-2328.
[61]
C. Li,; A. Guerrero,; S. Huettner,; J. Bisquert, Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 2018, 9, 5113.
[62]
S. J. Yoon,; M. Kuno,; P. V. Kamat, Shift happens. How halide ion defects influence photoinduced segregation in mixed halide perovskites. ACS Energy Lett. 2017, 2, 1507-1514.
[63]
T. Zhang,; H. N. Chen,; Y. Bai,; S. Xiao,; L. Zhu,; C. Hu,; Q. Z. Xue,; S. H. Yang, Understanding the relationship between ion migration and the anomalous hysteresis in high-efficiency perovskite solar cells: A fresh perspective from halide substitution. Nano Energy 2016, 26, 620-630.
Nano Research
Pages 1012-1017
Cite this article:
Chen H, Wang L, Shen C, et al. Strong electron-ion coupling in gradient halide perovskite heterojunction. Nano Research, 2021, 14(4): 1012-1017. https://doi.org/10.1007/s12274-020-3143-8
Topics:

741

Views

3

Crossref

N/A

Web of Science

3

Scopus

2

CSCD

Altmetrics

Received: 04 August 2020
Revised: 09 September 2020
Accepted: 24 September 2020
Published: 23 November 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return