AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes

Buke Wu1,2Wen Luo1,3( )Ming Li1Lin Zeng2,4,5Liqiang Mai1,6( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen 518055, China
Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, China
Show Author Information

Graphical Abstract

Abstract

Aqueous rechargeable zinc ion batteries (ARZIBs) have received unprecedented attention owing to the low cost and high-safety merits. However, their further development and application are hindered by the issues of electrodes such as cathode dissolution, zinc anode dendrite, passivation, as well as sluggish reaction kinetics. Designing heterostructure electrodes is a powerful method to improve the electrochemical performance of electrodes by grafting the advantages of functional materials onto the active materials. In this review, various modified heterostructure electrodes with optimized electrochemical performance and wider applications are introduced. Moreover, the synergistic effect between active materials and functional materials are also in-depth analyzed. The specific modification methods are divided into interphase modification (electrode-electrolyte interphase and electrode-current collector interphase) and structure optimization. Finally, the conclusion and future perspective on the optimization mechanism of functional materials, and the cost issue of practical heterostructure electrodes in ARZIBs are also proposed. It is expected that this review can promote the further development of ARZIBs towards practical utility.

References

[1]
Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2016, 16, 45-56.
[2]
Choi, C.; Ashby, D. S.; Butts, D. M.; DeBlock, R. H.; Wei, Q. L.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5-19.
[3]
Liu, Z. H.; Yu, Q.; Zhao, Y. L.; He, R. H.; Xu, M.; Feng, S. H.; Li, S. D.; Zhou, L.; Mai, L. Q. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285-309.
[4]
An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481-490.
[5]
Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027-4054.
[6]
Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.
[7]
He, P.; Chen, Q.; Yan, M. Y.; Xu, X.; Zhou, L.; Mai, L. Q.; Nan, C. W. Building better zinc-ion batteries: A materials perspective. EnergyChem 2019, 1, 100022.
[8]
Li, M.; Lu, J.; Ji, X. L.; Li, Y. G.; Shao, Y. Y.; Chen, Z. W.; Zhong, C.; Amine, K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276-294.
[9]
Zhang, Y. J.; Chen, Z.; Qiu, H. Y.; Yang, W. H.; Zhao, Z. M.; Zhao, J. W.; Cui, G. L. Pursuit of reversible Zn electrochemistry: A time-honored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4.
[10]
Liu, Z. X.; Huang, Y.; Huang, Y.; Yang, Q.; Li, X. L.; Huang, Z. D.; Zhi, C. Y. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180-232.
[11]
Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771-799.
[12]
Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3, 2480-2501.
[13]
Yu, Y. X.; Xu, W.; Liu, X. Q.; Lu, X. H. Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: Recent progress and future perspectives. Adv. Sustain. Syst. 2020, 4, 2000082.
[14]
Li, M.; He, Q.; Li, Z. L.; Li, Q.; Zhang, Y. X.; Meng, J. S.; Liu, X.; Li, S. D.; Wu, B. K.; Chen, L. N. et al. A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan. Adv. Energy Mater. 2019, 9, 1901469.
[15]
Li, M.; Meng, J. S.; Li, Q.; Huang, M.; Liu, X.; Owusu, K. A.; Liu, Z.; Mai, L. Q. Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries. Adv. Funct. Mater. 2018, 28, 1802016.
[16]
Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater. Today Energy 2020, 18, 100548.
[17]
Pan, Z.; Yang, J.; Jiang, J.; Qiu, Y.; Wang, J. Flexible quasi-solid-state aqueous Zn-based batteries: Rational electrode designs for high-performance and mechanical flexibility. Mater. Today Energy 2020, 18, 100523.
[18]
Xu, L.; Zhang, Y.; Zheng, J.; Jiang, H.; Hu, T.; Meng, C. Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries. Mater. Today Energy 2020, 18, 100509.
[19]
Xue, T.; Fan, H. J. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. J. Energy Chem. 2021, 54, 194-201.
[20]
Zhang, T. S.; Tang, Y.; Fang, G. Z.; Zhang, C. Y.; Zhang, H. L.; Guo, X.; Cao, X. X.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 2020, 30, 2002711.
[21]
Zhu, K. Y.; Wu, T.; Sun, S. C.; van den Bergh, W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy Storage Mater. 2020, 29, 60-70.
[22]
Li, Z.; Wu, B. K.; Yan, M. Y.; He, L.; Xu, L.; Zhang, G. B.; Xiong, T. F.; Luo, W.; Mai, L. Q. Novel charging-optimized cathode for a fast and high-capacity zinc-ion battery. ACS Appl. Mater. Interfaces 2020, 12, 10420-10427.
[23]
Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.
[24]
Cao, Z. Y.; Zhuang, P. Y.; Zhang, X.; Ye, M. X.; Shen, J. F.; Ajayan, P. M. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 2020, 10, 2001599.
[25]
Wu, T. H.; Zhang, Y.; Althouse, Z. D.; Liu, N. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 2019, 6, 100032.
[26]
Yang, Q.; Liang, G. J.; Guo, Y.; Liu, Z. X.; Yan, B. X.; Wang, D. H.; Huang, Z. D.; Li, X. L.; Fan, J.; Zhi, C. Y. Do zinc dendrites exist in neutral zinc batteries: A developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 2019, 31, 1903778.
[27]
Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.
[28]
Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.
[29]
Zhu, Q. C.; Xiao, Q.; Zhang, B. W.; Yan, Z. C.; Liu, X.; Chen, S.; Ren, Z. F.; Yu, Y. VS4 with a chain crystal structure used as an intercalation cathode for aqueous zn-ion batteries. J. Mater. Chem. A 2020, 8, 10761-10766.
[30]
Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 v: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.
[31]
Zhu, K. Y.; Wu, T.; Sun, S. C.; Wen, Y. T.; Huang, K. Electrode materials for practical rechargeable aqueous Zn-ion batteries: Challenges and opportunities. ChemElectroChem 2020, 7, 2714-2734.
[32]
Nam, K. W.; Park, S. S.; dos Reis, R.; Dravid, V. P.; Kim, H.; Mirkin, C. A.; Stoddart, J. F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948.
[33]
Zhang, H. Z.; Fang, Y. B.; Yang, F.; Liu, X. Q.; Lu, X. H. Aromatic organic molecular crystal with enhanced π-π stacking interaction for ultrafast Zn-ion storage. Energ. Environ. Sci. 2020, 13, 2515-2523.
[34]
Mathew, V.; Sambandam, B.; Kim, S.; Kim, S.; Park, S.; Lee, S.; Alfaruqi, M. H.; Soundharrajan, V.; Islam, S.; Putro, D. Y. et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments. Acs Energy Lett. 2020, 5, 2376-2400.
[35]
Liu, S. D.; Kang, L.; Kim, J. M.; Chun, Y. T.; Zhang, J.; Jun, S. C. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv. Energy Mater. 2020, 10, 2000477.
[36]
Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.
[37]
Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.
[38]
Chen, L. N.; Ruan, Y. S.; Zhang, G. B.; Wei, Q. L.; Jiang, Y. L.; Xiong, T. F.; He, P.; Yang, W.; Yan, M. Y.; An, Q. Y. et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction. Chem. Mater. 2019, 31, 699-706.
[39]
Jiang, H. M.; Zhang, Y. F.; Liu, Y. Y.; Yang, J.; Xu, L.; Wang, P.; Gao, Z. M.; Zheng, J. Q.; Meng, C. G.; Pan, Z. H. In situ grown 2D hydrated ammonium vanadate nanosheets on carbon cloth as a free-standing cathode for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 2020, 8, 15130-15139.
[40]
Guo, J.; Ming, J.; Lei, Y. J.; Zhang, W. L.; Xia, C.; Cui, Y.; Alshareef, H. N. Artificial solid electrolyte interphase for suppressing surface reactions and cathode dissolution in aqueous zinc ion batteries. ACS Energy Lett. 2019, 4, 2776-2781.
[41]
Wu, B. K.; Wu, Y. Z.; Lu, Z. D.; Zhang, J. S.; Han, N.; Wang, Y. M.; Li, X. M.; Lin, M.; Zeng, L. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 2021, 9, 4734-4743.
[42]
Li, J. F.; Chen, Y. H.; Guo, J.; Wang, F. H.; Liu, H. B.; Li, Y. L. Graphdiyne oxide-based high-performance rechargeable aqueous Zn-MnO2 battery. Adv. Funct. Mater. 2020, 30, 2004115.
[43]
Wu, B. K.; Zhang, G. B.; Yan, M. Y.; Xiong, T. F.; He, P.; He, L.; Xu, X.; Mai, L. Q. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850.
[44]
Gou, L.; Xue, D.; Mou, K. L.; Zhao, S. P.; Wang, Y.; Fan, X. Y.; Li, D. L. α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance. J. Electrochem. Soc. 2019, 166, A3362-A3368.
[45]
Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. N.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274.
[46]
Liu, X.; Xu, G. B.; Zhang, Q.; Huang, S. J.; Li, L.; Wei, X. L.; Cao, J. X.; Yang, L. W.; Chu, P. K. Ultrathin hybrid nanobelts of single-crystalline VO2 and poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability. J. Power Sources 2020, 463, 228223.
[47]
Zhang, H. Z.; Wang, J.; Liu, Q. Y.; He, W. Y.; Lai, Z. Z.; Zhang, X. Y.; Yu, M. H.; Tong, Y. X.; Lu, X. H. Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 2019, 21, 154-161.
[48]
Xu, D. M.; Wang, H. W.; Li, F. Y.; Guan, Z. C.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv. Mate. Interfaces 2019, 6, 1801506.
[49]
Zhang, Y.; Xu, G. B.; Liu, X.; Wei, X. L.; Cao, J. X.; Yang, L. W. Scalable in situ reactive assembly of polypyrrole-coated MnO2 nanowire and carbon nanotube composite as freestanding cathodes for high performance aqueous Zn-ion batteries. ChemElectroChem 2020, 7, 2762-2770.
[50]
Guo, C.; Tian, S.; Chen, B. L.; Liu, H. M.; Li, J. F. Constructing α-MnO2@PPy core-shell nanorods towards enhancing electrochemical behaviors in aqueous zinc ion battery. Mater. Lett. 2020, 262, 127180.
[51]
Zhu, C. Y.; Fang, G. Z.; Zhou, J.; Guo, J. H.; Wang, Z. Q.; Wang, C.; Li, J. Y.; Tang, Y.; Liang, S. Q. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677-9683.
[52]
He, B.; Zhang, Q. C.; Li, L. H.; Sun, J.; Man, P.; Zhou, Z. Y.; Li, Q. L.; Guo, J. B.; Xie, L. Y.; Li, C. W. et al. High-performance flexible all-solid-state aqueous rechargeable Zn-MnO2 microbatteries integrated with wearable pressure sensors. J. Mater. Chem. A 2018, 6, 14594-14601.
[53]
Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.
[54]
Wang, K.; Zhang, X. H.; Han, J. W.; Zhang, X.; Sun, X. Z.; Li, C.; Liu, W. H.; Li, Q. W.; Ma, Y. W. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573-24582.
[55]
Shi, W. H.; Rui, X. H.; Zhu, J. X.; Yan, Q. Y. Design of nanostructured hybrid materials based on carbon and metal oxides for li ion batteries. J. Phys. Chem. C 2012, 116, 26685-26693.
[56]
Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140-3148.
[57]
Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941-951.
[58]
Wang, X.; Li, Y. G.; Das, P.; Zheng, S. H.; Zhou, F.; Wu, Z. S. Layer-by-layer stacked amorphous V2O5/graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater. 2020, 31, 156-163.
[59]
Boruah, B. D.; Mathieson, A.; Wen, B.; Feldmann, S.; Dose, W. M.; De Volder, M. Photo-rechargeable zinc-ion batteries. Energy Environ. Sci. 2020, 13, 2414-2421.
[60]
Gong, X. Z.; Liu, G. Z.; Li, Y. S.; Yu, D. Y. W.; Teoh, W. Y. Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem. Mater. 2016, 28, 8082-8118.
[61]
El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.
[62]
Cai, Y. S.; Liu, F.; Luo, Z. G.; Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018, 13, 168-174.
[63]
Wang, X.; Li, Y. G.; Wang, S.; Zhou, F.; Das, P.; Sun, C. L.; Zheng, S. H.; Wu, Z. S. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability. Adv. Energy Mater. 2020, 10, 2000081.
[64]
Liu, Z. C.; Yuan, X. H.; Zhang, S. S.; Wang, J.; Huang, Q. H.; Yu, N. F.; Zhu, Y. S.; Fu, L. J.; Wang, F. X.; Chen, Y. H. et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 2019, 11, 12.
[65]
Dai, X.; Wan, F.; Zhang, L. L.; Cao, H. M.; Niu, Z. Q. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019, 17, 143-150.
[66]
Zhang, L. S.; Miao, L.; Zhang, B.; Wang, J. S.; Liu, J.; Tan, Q. Y.; Wan, H. Z.; Jiang, J. J. A durable VO2(M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion. J. Mater. Chem. A 2020, 8, 1731-1740.
[67]
Wan, F.; Huang, S.; Cao, H. M.; Niu, Z. Q. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 2020, 14, 6752-6760.
[68]
Yin, B. S.; Zhang, S. W.; Ke, K.; Xiong, T.; Wang, Y. M.; Lim, B. K. D.; Lee, W. S. V.; Wang, Z. B.; Xue, J. M. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale 2019, 11, 19723-19728.
[69]
Liu, Y. Z.; Chi, X. W.; Han, Q.; Du, Y. X.; Huang, J. Q.; Liu, Y.; Yang, J. H. α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries. J. Power Sources 2019, 443, 227244.
[70]
Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.
[71]
Wang, F.; Hu, E. Y.; Sun, W.; Gao, T.; Ji, X.; Fan, X. L.; Han, F. D.; Yang, X. Q.; Xu, K.; Wang, C. S. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 2018, 11, 3168-3175.
[72]
Lin, Y. T.; Zhou, F. S.; Xie, M. X.; Zhang, S.; Deng, C. V6O13-δ@C nanoscrolls with expanded distances between adjacent shells as a high-performance cathode for a knittable zinc-ion battery. ChemSusChem 2020, 13, 3696-3706.
[73]
Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx mxene. Adv. Eng. Mater. 2020, 22, 1901241.
[74]
Li, X. L.; Li, M.; Yang, Q.; Li, H. F.; Xu, H. L.; Chai, Z. F.; Chen, K.; Liu, Z. X.; Tang, Z. J.; Ma, L. T. et al. Phase transition induced unusual electrochemical performance of V2CTx mxene for aqueous zinc hybrid-ion battery. ACS Nano 2020, 14, 541-551.
[75]
Narayanasamy, M.; Kirubasankar, B.; Shi, M. J.; Velayutham, S.; Wang, B.; Angaiah, S.; Yan, C. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem. Commun. 2020, 56, 6412-6415.
[76]
Shi, M. J.; Wang, B.; Shen, Y.; Jiang, J. T.; Zhu, W. H.; Su, Y. J.; Narayanasamy, M.; Angaiah, S.; Yan, C.; Peng, Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem. Eng. J. 2020, 399, 125627.
[77]
Yang, H. J.; Chang, Z.; Qiao, Y.; Deng, H.; Mu, X. W.; He, P.; Zhou, H. S. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem., Int. Ed. 2020, 59, 9377-9381.
[78]
Yang, Q.; Guo, Y.; Yan, B. X.; Wang, C. D.; Liu, Z. X.; Huang, Z. D.; Wang, Y. K.; Li, Y. R.; Li, H. F.; Song, L. et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 2020, 32, 2001755.
[79]
Zhao, R. R.; Yang, Y.; Liu, G. X.; Zhu, R. J.; Huang, J. B.; Chen, Z. Y.; Gao, Z. H.; Chen, X.; Qie, L. Redirected zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes. Adv. Funct. Mater. 2020, 31, 2001867.
[80]
Zhao, K. N.; Wang, C. X.; Yu, Y. H.; Yan, M. Y.; Wei, Q. L.; He, P.; Dong, Y. F.; Zhang, Z. Y.; Wang, X. D.; Mai, L. Q. Ultrathin surface coating enables stabilized zinc metal anode. Adv. Mater. Interfaces 2018, 5, 1800848.
[81]
Kim, J. Y.; Liu, G. C.; Shim, G. Y.; Kim, H.; Lee, J. K. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 2020, 30, 2004210.
[82]
Ma, J.; Hu, P.; Cui, G. L.; Chen, L. Q. Surface and interface issues in spinel LiNi0.5Mn1.5O4: Insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 2016, 28, 3578-3606.
[83]
Xia, A. L.; Pu, X. M.; Tao, Y. Y.; Liu, H. M.; Wang, Y. G. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 2019, 481, 852-859.
[84]
Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645-648.
[85]
Zeng, Y. X.; Zhang, X. Y.; Qin, R. F.; Liu, X. Q.; Fang, P. P.; Zheng, D. Z.; Tong, Y. X.; Lu, X. H. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, 1903675.
[86]
Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676-11685.
[87]
Wang, S. B.; Ran, Q.; Yao, R. Q.; Shi, H.; Wen, Z.; Zhao, M.; Lang, X. Y.; Jiang, Q. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 2020, 11, 1634.
[88]
Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561-568.
[89]
Ma, L.; Schroeder, M. A.; Borodin, O.; Pollard, T. P.; Ding, M. S.; Wang, C. S.; Xu, K. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 2020, 5, 743-749.
Nano Research
Pages 3174-3187
Cite this article:
Wu B, Luo W, Li M, et al. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Research, 2021, 14(9): 3174-3187. https://doi.org/10.1007/s12274-021-3392-1
Topics:
Part of a topical collection:

739

Views

48

Crossref

46

Web of Science

44

Scopus

7

CSCD

Altmetrics

Received: 07 November 2020
Revised: 05 February 2021
Accepted: 09 February 2021
Published: 07 April 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return