AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structure design and property of multiple-basis-element (MBE) alloys flexible films

Hao Huang1,2Peter K. Liaw3Yong Zhang1,2,4( )
Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming, Qinghai University, Xining 810016, China
State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996-2100, USA
Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China
Show Author Information

Graphical Abstract

A substrate prestrain method was used to prepare wrinkle-structuredZr52Ti34Nb14 multiple-basis-element (MBE) films. The films couldtransition between the wrinkled and flattened states changing their opticaland wetting properties.

Abstract

A controlled wrinkled structure is a simple and effective approach to achieve unique properties and has been widely used in flexible materials. In this study, we reported a substrate prestrain method for fabricating wrinkle-structured Zr52Ti34Nb14 multiple-basis-element (MBE) alloy films as biocompatible materials. Variations in the film thickness and substrate prestraining enabled a precise control of the amplitude and wavelength of the wrinkled structures, ranging from micrometers to nanometers. Moreover, owing to the flexibility of the wrinkled structures, the wrinkle-structure pattern could be adjusted by simply relaxing or further stretching of the substrate, leading to dynamically tunable transmittance and wetting behaviors. This result not only reveals Zr52Ti34Nb14 MBE alloy films as a potential flexible material, but also provides a new structural design approach for other MBE alloy systems.

References

1

Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149.

2

Yu, S. J.; Sun, Y. D.; Ni, Y.; Zhang, X. F.; Zhou, H. Controlled formation of surface patterns in metal films deposited on elasticity-gradient PDMS substrates. ACS Appl. Mater. Interfaces 2016, 8, 5706–5714.

3

Wu, K.; Yuan, H. Z.; Li, S. J.; Zhang, J. Y.; Liu, G.; Sun, J. Two-stage wrinkling of Al films deposited on polymer substrates. Scr. Mater. 2019, 162, 456–459.

4

Khang, D. Y.; Jiang, H. Q.; Huang, Y.; Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 2006, 311, 208–212.

5

Khare, K.; Zhou, J. H.; Yang, S. Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmuir 2009, 25, 12794–12799.

6

Yu, Y.; Luo, S.; Sun, L.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Wang, J. P.; Fan, S. S. Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale 2015, 7, 10178–10185.

7

Zang, J. F.; Ryu, S.; Pugno, N.; Wang, Q. M.; Tu, Q.; Buehler, M. J.; Zhao, X. Z. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 2013, 12, 321–325.

8

Wang, X. L.; Hu, H.; Shen, Y. D.; Zhou, X. C.; Zheng, Z. J. Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 2011, 23, 3090–3094.

9

Xian, H. J.; Liu, M.; Wang, X. C.; Ye, F. F.; Wen, P.; Bai, H. Y.; Liu, Y. H.; Wang, W. H. Flexible and stretchable metallic glass micro- and nano-structures of tunable properties. Nanotechnology 2019, 30, 085705.

10

Jimbo, Y.; Matsuhisa, N.; Lee, W.; Zalar, P.; Jinno, H.; Yokota, T.; Sekino, M.; Someya, T. Ultraflexible transparent oxide/metal/oxide stack electrode with low sheet resistance for electrophysiological measurements. ACS Appl. Mater. Interfaces 2017, 9, 34744–34750.

11

Park, S. J.; Kim, J.; Chu, M.; Khine, M. Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv. Mater. Technol. 2016, 1, 1600053.

12

Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 2015, 15, 5240–5247.

13

Cheng, T.; Zhang, Y. Z.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349–3376.

14

Xu, J. S.; Chen, J.; Zhang, M.; Hong, J. D.; Shi, G. Q. Highly conductive stretchable electrodes prepared by in situ reduction of wavy graphene oxide films coated on elastic tapes. Adv. Electron. Mater. 2016, 2, 1600022.

15

Kim, B. S.; Kwon, H.; Kwon, H. J.; Pyo, J. B.; Oh, J.; Hong, S. Y.; Park, J. H.; Char, K.; Ha, J. S.; Son, J. G. et al. Buckling instability control of 1D nanowire networks for a large-area stretchable and transparent electrode. Adv. Funct. Mater. 2020, 30, 1910214.

16

Kim, P.; Hu, Y. H.; Alvarenga, J.; Kolle, M.; Suo, Z. G.; Aizenberg, J. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns. Adv. Opt. Mater. 2013, 1, 381–388.

17

Lee, S. G.; Lee, D. Y.; Lim, H. S.; Lee, D. H.; Lee, S.; Cho, K. Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 2010, 22, 5013–5017.

18

Kim, H. N.; Ge, D. T.; Lee, E.; Yang, S. Multistate and on-demand smart windows. Adv. Mater. 2018, 30, 1803847.

19

Lee, W. K.; Jung, W. B.; Nagel, S. R.; Odom, T. W. Stretchable superhydrophobicity from monolithic, three-dimensional hierarchical wrinkles. Nano Lett. 2016, 16, 3774–3779.

20

Sahoo, B. N.; Woo, J.; Algadi, H.; Lee, J.; Lee, T. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications. Adv. Mater. Technol. 2019, 4, 1900230.

21

Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375-377, 213–218.

22

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

23

Chen, Z.; Chen, W. P.; Wu, B. Y.; Cao, X. Y.; Liu, L. S.; Fu, Z. Q. Effects of co and Ti on microstructure and mechanical behavior of Al0.75 FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 2015, 648, 217–224.

24

Shi, P. J.; Ren, W. L.; Zheng, T. X.; Ren, Z. M.; Hou, X. L.; Peng, J. C.; Hu, P. F.; Gao, Y. F.; Zhong, Y. B.; Liaw, P. K. Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nat. Commun. 2019, 10, 489.

25

Liang, Y. J.; Wang, L. J.; Wen, Y. R.; Cheng, B. Y.; Wu, Q. L.; Cao, T. Q.; Xiao, Q.; Xue, Y. F.; Sha, G.; Wang, Y. D. et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 2018, 9, 4063.

26

Cai, Y. P.; Wang, G. J.; Ma, Y. J.; Cao, Z. H.; Meng, X. K. High hardness dual-phase high entropy alloy thin films produced by interface alloying. Scr. Mater. 2019, 162, 281–285.

27

Hasan, M. N.; Liu, Y. F.; An, X. H.; Gu, J.; Song, M.; Cao, Y.; Li, Y. S.; Zhu, Y. T.; Liao, X. Z. Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures. Int. J. Plast. 2019, 123, 178–195.

28

Qiu, X. W.; Zhang, Y. P.; He, L.; Liu, C. G. Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J. Alloys Compd. 2013, 549, 195–199.

29

Nene, S. S.; Frank, M.; Liu, K.; Sinha, S.; Mishra, R. S.; McWilliams, B. A.; Cho, K. C. Corrosion-resistant high entropy alloy with high strength and ductility. Scr. Mater. 2019, 166, 168–172.

30

Senkov, O. N.; Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw, P. K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.

31

Sathiyamoorthi, P.; Basu, J.; Kashyap, S.; Pradeep, K. G.; Kottada, R. S. Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite. Mater. Des. 2017, 134, 426–433.

32

Jin, K.; Lu, C.; Wang, L. M.; Qu, J.; Weber, W. J.; Zhang, Y.; Bei, H. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 2016, 119, 65–70.

33

Ullah, M. W.; Aidhy, D. S.; Zhang, Y. W.; Weber, W. J. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys. Acta Mater. 2016, 109, 17–22.

34

Yan, X. H.; Li, J. S.; Zhang, W. R.; Zhang, Y. A brief review of high-entropy films. Mater. Chem. Phys. 2018, 210, 12–19.

35

Xing, Q. W.; Ma, J.; Wang, C.; Zhang, Y. High-throughput screening solar-thermal conversion films in a pseudobinary (Cr, Fe, V)–(Ta, W) system. ACS Comb. Sci. 2018, 20, 602–610.

36

Yan, X. H.; Ma, J.; Zhang, Y. High-throughput screening for biomedical applications in a Ti-Zr-Nb alloy system through masking co-sputtering. Sci. China Phys. Mech. Astron. 2019, 62, 996111.

37

Yan, X. H.; Zhang, Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties. Scr. Mater. 2020, 178, 329–333.

38

Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.

39

Chen, M. W. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90.

40

Li, S. J.; Wu, K.; Yuan, H. Z.; Zhang, J. Y.; Liu, G.; Sun, J. Formation of wrinkled patterns in metal films deposited on elastic substrates: Tunability and wettability. Surf. Coat. Technol. 2019, 362, 35–43.

41

Jiang, H. Q.; Khang, D. Y.; Song, J. Z.; Sun, Y. G.; Huang, Y. G.; Rogers, J. A. Finite deformation mechanics in buckled thin films on compliant supports. Proc. Natl. Acad. Sci. USA 2007, 104, 15607–15612.

42

Li, Z. W.; Zhai, Y.; Wang, Y.; Wendland, G. M.; Yin, X. B.; Xiao, J. L. Harnessing surface wrinkling–cracking patterns for tunable optical transmittance. Adv. Opt. Mater. 2017, 5, 1700425.

43

Li, X. M.; Reinhoudt, D.; Crego-Calama, M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 2007, 36, 1350–1368.

44

Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293.

45

Chung, J. Y.; Youngblood, J. P.; Stafford, C. M. Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 2007, 3, 1163–1169.

46

Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994.

47

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

Nano Research
Pages 4837-4844
Cite this article:
Huang H, Liaw PK, Zhang Y. Structure design and property of multiple-basis-element (MBE) alloys flexible films. Nano Research, 2022, 15(6): 4837-4844. https://doi.org/10.1007/s12274-021-3534-5
Topics:
Part of a topical collection:

984

Views

3

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 22 February 2021
Revised: 14 April 2021
Accepted: 21 April 2021
Published: 11 May 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return