Publications
Sort:
Research Article Issue
Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy
Nano Research 2022, 15(6): 4859-4866
Published: 17 August 2021
Abstract PDF (7.5 MB) Collect
Downloads:52

The recently developed dual-phase (DP) non-equiatomic Fe50Mn30Co10Cr10 (at.%) high-entropy alloy (HEA) showed much higher strength and ductility compared to the single-phase equiatomic Fe20Mn20Ni20Co20Cr20 (at.%) HEA at room temperature. Herein we probe the cryogenic mechanical properties of the non-equiatomic DP-HEA with different grain sizes and compare with the equiatomic single-phase HEA. Our results show that the cryogenic ultimate tensile strengths of the coarse-grained (~ 200 μm) and fine-grained (~ 4 μm) DP-HEAs reach up to 1,133 and 1,342 MPa, respectively, which are significantly higher than that of the equiatomic single-phase HEAs with similar grain sizes. Furthermore, the fine-grained DP-HEA shows substantial improvement in both strength and ductility compared to the coarse-grained counterparts at cryogenic temperatures. Microstructural analysis reveals that the enhanced mechanical properties of the DP-HEA at cryogenic temperatures are attributed to a more extensive displacive transformation from the face-centered cubic (FCC) matrix into the hexagonal close-packed (HCP) phase compared to that at room temperature. Specifically, the HCP phase fraction in tensile tested fine-grained DP-HEAs increases from ~ 39% to ~ 79% with decreasing temperature from 298 to 77 K. The enhanced transformation behavior is enabled by the reduced stacking fault energy of the material with the decrease of deformation temperatures. The resulting outstanding combination of strength and ductility further suggests that the DP-HEAs are promising candidates as structural materials for cryogenic applications.

Research Article Issue
Structure design and property of multiple-basis-element (MBE) alloys flexible films
Nano Research 2022, 15(6): 4837-4844
Published: 11 May 2021
Abstract PDF (12.8 MB) Collect
Downloads:41

A controlled wrinkled structure is a simple and effective approach to achieve unique properties and has been widely used in flexible materials. In this study, we reported a substrate prestrain method for fabricating wrinkle-structured Zr52Ti34Nb14 multiple-basis-element (MBE) alloy films as biocompatible materials. Variations in the film thickness and substrate prestraining enabled a precise control of the amplitude and wavelength of the wrinkled structures, ranging from micrometers to nanometers. Moreover, owing to the flexibility of the wrinkled structures, the wrinkle-structure pattern could be adjusted by simply relaxing or further stretching of the substrate, leading to dynamically tunable transmittance and wetting behaviors. This result not only reveals Zr52Ti34Nb14 MBE alloy films as a potential flexible material, but also provides a new structural design approach for other MBE alloy systems.

Total 2