AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Precursor chemistry towards highly efficient and phase-stable red emitting CsPbI3 perovskite nanocrystals

Dejian Chen1,2Decai Huang1,2Mingwei Yang1,2Kunyuan Xu1,2Jie Hu1,2Sisi Liang1,2Haomiao Zhu1,2( )
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou 350002 China
Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences, Xiamen 361021 China
Show Author Information

Graphical Abstract

Abstract

All-inorganic cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have attracted considerable scientific and technological interest due to their precise bandgap tunability, high color purity and efficient luminescence. Nevertheless, their poor stability in harsh conditions such as moisture, ultraviolet (UV) light irradiation and high temperature, is a major obstacle for their further commercial applications. Herein, by simply using a new type of precursor, namely "HPbX3" (X = Cl, Br, I), we can achieve the coordination equilibrium for Pb precursors during reaction and obtain high-quality perovskite nanocrystals with tremendously enhanced luminous efficiency and chemical stability based on hot-injection method. The prepared α-CsPbI3 nanocrystals exhibit an extremely high photoluminescence quantum yield of 96% and keep stable in air for more than two months without any post-synthesis treatment. Moreover, stability evaluations under UV light irradiation, water or thermal impact are also performed and the results show substantially improved stability of these nanocrystals as compared with the samples prepared using traditional PbI2 as precursor. Through temperature-dependent (10–300 K) steady and transient spectral analysis combined with compositional measurements, it is revealed that the lower structural defect density, which is guaranteed by abundant halogen when using HPbX3 as precursor, is the most important reason for such performance enhancement.

Electronic Supplementary Material

Download File(s)
12274_2021_3538_MOESM1_ESM.pdf (4.5 MB)

References

1

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

2

Jung, M.; Ji, S. G.; Kim, G.; Seok, S. I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038.

3

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

4

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

5

Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–95.

6

Pan, J.; Shang, Y. Q.; Yin, J.; De Bastiani, M.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2017, 140, 562–565.

7

Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Bai, D. L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat. Commun. 2018, 9, 4544.

8

Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T. Y.; Kan, M.; Li, Y. W.; Zhang, L. J.; Wang, X. T.; Yang, Y. G.; Gao, X. Y. et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies > 18%. Science 2019, 365, 591–595.

9

Yi, C. Y.; Luo, J. S.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Röthlisberger, U.; Grätzel, M. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 2016, 9, 656–662.

10

Liu, F.; Ding, C.; Zhang, Y. H.; Ripolles, T. S.; Kamisaka, T.; Toyoda, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S. Y. et al. Colloidal synthesis of air-stable alloyed CsSn1–xPbxI3 perovskite nanocrystals for use in solar cells. J. Am. Chem. Soc. 2017, 139, 16708–16719.

11

Yao, J. S.; Ge, J.; Wang, K. H.; Zhang, G. Z.; Zhu, B. S.; Chen, C.; Zhang, Q.; Luo, Y.; Yu, S. H.; Yao, H. B. Few-nanometer-sized α-CsPbI3 quantum dots enabled by strontium substitution and iodide passivation for efficient red-light emitting diodes. J. Am. Chem. Soc. 2019, 141, 2069–2079.

12

Lu, M.; Zhang, X. Y.; Zhang, Y.; Guo, J.; Shen, X. Y.; Yu, W. W.; Rogach, A. L. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv. Mater. 2018, 30, 1804691.

13

Bai, D. L.; Bian, H.; Jin, Z. W.; Wang, H. R.; Meng, L. N.; Wang, Q.; Liu, S. Z. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%. Nano Energy 2018, 52, 408–415.

14

Wang, Y.; Zhang, T. Y.; Kan, M.; Zhao, Y. X. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics. J. Am. Chem. Soc. 2018, 140, 12345–12348.

15

Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N. Phase-stable CsPbI3 nanocrystals: The reaction temperature matters. Angew. Chem. , Int. Ed. 2018, 57, 9083–9087.

16

Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

17

Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2018, 3, 204–213.

18

Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals. ACS Energy Lett. 2019, 4, 1610–1618.

19

Pradhan, N. Tips and twists in making high photoluminescence quantum yield perovskite nanocrystals. ACS Energy Lett. 2019, 4, 1634–1638.

20

Dai, J. F.; Xi, J.; Zu, Y. Q.; Li, L.; Xu, J.; Shi, Y. F.; Liu, X. Y.; Fan, Q. H.; Zhang, J. J.; Wang, S. P. et al. Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes. Nano Energy 2020, 70, 104467.

21

Wang, F.; Yu, H.; Xu, H. H.; Zhao, N. HPbI3: A new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 2015, 25, 1120–1126.

22

Pang, S. P.; Zhou, Y. Y.; Wang, Z. W.; Yang, M. J.; Krause, A. R.; Zhou, Z. M.; Zhu, K.; Padture, N. P.; Cui, G. L. Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3-CH3NH2 precursor pair. J. Am. Chem. Soc. 2016, 138, 750–753.

23

Xiang, S. S.; Fu, Z. H.; Li, W. P.; Wei, Y.; Liu, J. M.; Liu, H. C.; Zhu, L. Q.; Zhang, R. F.; Chen, H. N. Highly air-stable carbon-based α-CsPbI3 perovskite solar cells with a broadened optical spectrum. ACS Energy Lett. 2018, 3, 1824–1831.

24

Jiang, Y. Z.; Yuan, J.; Ni, Y. X.; Yang, J. E.; Wang, Y.; Jiu, T. G.; Yuan, M. J.; Chen, J. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2018, 2, 1356–1368.

25

Cao, F.; Yu, D. J.; Xu, X. B.; Cai, B.; Gu, Y.; Dong, Y. H.; Shen, Y. L.; Zeng, H. B. Water-assisted synthesis of blue chip excitable 2D halide perovskite with green-red dual emissions for white LEDs. Small Methods 2019, 3, 1900365.

26

Xi, J.; Piao, C. C.; Byeon, J.; Yoon, J.; Wu, Z. X.; Choi, M. Rational core-shell design of open air low temperature in situ processable CsPbI3 quasi-nanocrystals for stabilized p-i-n solar cells. Adv. Energy Mater. 2019, 9, 1901787.

27

Duan, C. Y.; Cui, J.; Zhang, M. M.; Han, Y.; Yang, S. M.; Zhao, H.; Bian, H. T.; Yao, J. X.; Zhao, K.; Liu, Z. K. et al. Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 2020, 10, 2000691.

28

Ke, W. J.; Spanopoulos, I.; Stoumpos, C. C.; Kanatzidis, M. G. Myths and reality of HPbI3 in halide perovskite solar cells. Nat. Commun. 2018, 9, 4785.

29

Pei, Y. H.; Liu, Y.; Li, F. M.; Bai, S.; Jian, X.; Liu, M. Z. Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: Composition engineering, defect mitigation, and stability optimization. iScience 2019, 15, 165–172.

30

Bian, H.; Wang, H. R.; Li, Z. Z.; Zhou, F. G.; Xu, Y. K.; Zhang, H.; Wang, Q.; Ding, L. M.; Liu, S. Z.; Jin, Z. W. Unveiling the effects of hydrolysis-derived DMAI/DMAPbIx intermediate compound on the performance of CsPbI3 solar cells. Adv. Sci. 2020, 7, 1902868.

31

Cai, Y. T.; Wang, H. R.; Li, Y.; Wang, L.; Lv, Y.; Yang, X. Y.; Xie, R. J. Trimethylsilyl iodine-mediated synthesis of highly bright red-emitting CsPbI3 perovskite quantum dots with significantly improved stability. Chem. Mater. 2019, 31, 881–889.

32

Liu, F.; Zhang, Y. H.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T. et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 2017, 11, 10373–10383.

33

Huang, H. L.; Zhao, F. C.; Liu, L. G.; Zhang, F.; Wu, X. G.; Shi, L. J.; Zou, B. S.; Pei, Q. B.; Zhong, H. Z. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.

34

Berhe, T. A.; Su, W. N.; Chen, C. H.; Pan, C. J.; Cheng, J. H.; Chen, H. M.; Tsai, M. C.; Chen, L. Y.; Dubale, A. A.; Hwang, B. J. Organometal halide perovskite solar cells: Degradation and stability. Energy Environ. Sci. 2016, 9, 323–356.

35

Wei, Y.; Cheng, Z. Y.; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.

36

Sutton, R. J.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H. J. Cubic or orthorhombic? revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment. ACS Energy Lett. 2018, 3, 1787–1794.

37

Marronnier, A.; Roma, G.; Boyer-Richard, S.; Pedesseau, L.; Jancu, J. M.; Bonnassieux, Y.; Katan, C.; Stoumpos, C. C.; Kanatzidis, M. G.; Even, J. Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 2018, 12, 3477–3486.

38

Diroll, B. T.; Nedelcu, G.; Kovalenko, M. V.; Schaller, R. D. High-temperature photoluminescence of CsPbX3 (X= Cl, Br, I) nanocrystals. Adv. Funct. Mater. 2017, 27, 1606750.

39

Balena, A.; Perulli, A.; Fernandez, M.; De Giorgi, M. L.; Nedelcu, G.; Kovalenko, M. V.; Anni, M. Temperature dependence of the amplified spontaneous emission from CsPbBr3 nanocrystal thin films. J. Phys. Chem. C 2018, 122, 5813–5819.

40

Lee, S. M.; Moon, C. J.; Lim, H.; Lee, Y.; Choi, M. Y.; Bang, J. Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots: Splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature. J. Phys. Chem. C 2017, 121, 26054–26062.

41

Lanzetta, L.; Aristidou, N.; Haque, S. A. Stability of lead and tin halide perovskites: The link between defects and degradation. J. Phys. Chem. Lett. 2020, 11, 574–585.

42

Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.

43

Zhao, T.; Chueh, C. C.; Chen, Q.; Rajagopal, A.; Jen, A. K. Y. Defect passivation of organic-inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 2016, 1, 757–763.

44

Wang, Q.; Chen, B.; Liu, Y.; Deng, Y. H.; Bai, Y.; Dong, Q. F.; Huang, J. S. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy Environ. Sci. 2017, 10, 516–522.

45

Lu, M.; Zhang, X. Y.; Bai, X.; Wu, H.; Shen, X. Y.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Song, H. W.; Yu, W. W. et al. Spontaneous silver doping and surface passivation of CsPbI3 perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%. ACS Energy Lett. 2018, 3, 1571–1577.

46

Li, F.; Liu, Y.; Wang, H. L.; Zhan, Q.; Liu, Q. L.; Xia, Z. G. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 2018, 30, 8546–8554.

Nano Research
Pages 644-652
Cite this article:
Chen D, Huang D, Yang M, et al. Precursor chemistry towards highly efficient and phase-stable red emitting CsPbI3 perovskite nanocrystals. Nano Research, 2022, 15(1): 644-652. https://doi.org/10.1007/s12274-021-3538-1
Topics:

933

Views

21

Crossref

21

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 23 February 2021
Revised: 14 April 2021
Accepted: 25 April 2021
Published: 14 June 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return