AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Field-effect at electrical contacts to two-dimensional materials

Yao Guo1,2( )Yan Sun1Alvin Tang2Ching-Hua Wang2Yanqing Zhao1Mengmeng Bai1Shuting Xu1Zheqi Xu1Tao Tang3Sheng Wang4Chenguang Qiu4Kang Xu5Xubiao Peng1Junfeng Han1Eric Pop2Yang Chai5( )
School of Physics Beijing Institute of Technology Beijing 100081 China
Department of Electrical Engineering and Stanford SystemX Alliance Stanford University StanfordCA 94305 USA
Advanced Manufacturing EDA Co. Ltd.Shanghai 201204 China
Key Laboratory for the Physics and Chemistry of Nanodevices Department of Electronics Peking University Beijing 100871 China
Department of Applied Physics The Hong Kong Polytechnic UniversityHong Kong China
Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

The inferior electrical contact to two-dimensional (2D) materials is a critical challenge for their application in post-silicon very large- scale integrated circuits. Electrical contacts were generally related to their resistive effect, quantified as contact resistance. With a systematic investigation, this work demonstrates a capacitive metal-insulator-semiconductor (MIS) field-effect at the electrical contacts to 2D materials: The field-effect depletes or accumulates charge carriers, redistributes the voltage potential, and gives rise to abnormal current saturation and nonlinearity. On one hand, the current saturation hinders the devices' driving ability, which can be eliminated with carefully engineered contact configurations. On the other hand, by introducing the nonlinearity to monolithic analog artificial neural network circuits, the circuits' perception ability can be significantly enhanced, as evidenced using a coronavirus disease 2019 (COVID-19) critical illness prediction model. This work provides a comprehension of the field-effect at the electrical contacts to 2D materials, which is fundamental to the design, simulation, and fabrication of electronics based on 2D materials.

Electronic Supplementary Material

Download File(s)
12274_2021_3670_MOESM1_ESM.pdf (4.4 MB)

References

1

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99-102.

2
Huyghebaert, C.; Schram, T.; Smets, Q.; Agarwal, T. K.; Verreck, D.; Brems, S.; Phommahaxay, A.; Chiappe, D.; El Kazzi, S.; De La Rosa, C. L. et al. 2D materials: Roadmap to CMOS integration. In Proceedings of the 2018 IEEE International Electron Devices Meeting, San Francisco, 2018, pp 22.1.1-22.1.4.https://doi.org/10.1109/IEDM.2018.8614679
3

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507-518.

4

Chen, M. L.; Sun, X. D.; Liu, H.; Wang, H. W.; Zhu, Q. B.; Wang, S. S.; Du, H. F.; Dong, B. J.; Zhang, J.; Sun, Y. et al. A FinFET with one atomic layer channel. Nat. Commun. 2020, 11, 1205.

5

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

6

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

7

Bandurin, D. A.; Tyurnina, A. V.; Yu, G. L.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S. et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017, 12, 223-227.

8

Liu, T.; Liu, S.; Tu, K. H.; Schmidt, H.; Chu, L. Q.; Xiang, D.; Martin, J.; Eda, G.; Ross, C. A.; Garaj, S. Crested two-dimensional transistors. Nat. Nanotechnol. 2019, 14, 223-226.

9

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545-557.

10

Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. P. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458-465.

11

Pan, C.; Wang, C. Y.; Liang, S. J.; Wang, Y.; Cao, T. J.; Wang, P. F.; Wang, C.; Wang, S.; Cheng, B.; Gao, A. Y. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 2020, 3, 383-390.

12

Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130-136.

13

Hus, S. M.; Ge, R. J.; Chen, P. A.; Liang, L. B.; Donnelly, G. E.; Ko, W.; Huang, F. M.; Chiang, M. H.; Li, A. P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58-62.

14

Chen, S. C.; Mahmoodi, M. R.; Shi, Y. Y.; Mahata, C.; Yuan, B.; Liang, X. H.; Wen, C.; Hui, F.; Akinwande, D.; Strukov, D. B. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 2020, 3, 638-645.

15

Kong, L. G.; Chen, Y.; Liu, Y. Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 2021, 14, 1768-1783.

16

Zeng, S. F.; Tang, Z. W.; Liu, C. S.; Zhou, P. Electronics based on two-dimensional materials: Status and outlook. Nano Res. 2021, 14, 1752-1767.

17

Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G. et al. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018, 11, 722-730.

18

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.

19

Liu, H.; Si, M. W.; Deng, Y. X.; Neal, A. T.; Du, Y. C.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano 2014, 8, 1031-1038.

20

Guo, Y.; Han, Y. X.; Li, J. P.; Xiang, A.; Wei, X. L.; Gao, S.; Chen, Q. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano 2014, 8, 7771-7779.

21

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368-374.

22

Xia, F. N.; Perebeinos, V.; Lin, Y. M.; Wu, Y. Q.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179-184.

23

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with Scandium contacts. Nano Lett. 2013, 13, 100-105.

24

Zheng, X. R.; Calò, A.; Albisetti, E.; Liu, X. Y.; Alharbi, A. S. M.; Arefe, G.; Liu, X. C.; Spieser, M.; Yoo, W. J.; Taniguchi, T. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2019, 2, 17-25.

25

English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824-3830.

26

Rai, A.; Valsaraj, A.; Movva, H. C. P.; Roy, A.; Ghosh, R.; Sonde, S.; Kang, S.; Chang, J.; Trivedi, T.; Dey, R. et al. Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous Titanium suboxide encapsulation. Nano Lett. 2015, 15, 4329-4336.

27

McClellan, C. J.; Yalon, E.; Smithe, K. K. H.; Suryavanshi, S. V.; Pop, E.; High current density in monolayer MoS2 doped by AlOx. ACS Nano 2021, 15, 1587-1596

28

Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275-6280.

29
Dong, L.; Wang, X. W.; Zhang, J. Y.; Li, X. F.; Lou, X. B.; Conrad, N.; Wu, H.; Gordon, R. G.; Ye, P. D. III-V CMOS devices and circuits with high-quality atomic-layer-epitaxial La2O3/GaAs interface. In Proceedings of 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, 2014, pp 1-2.https://doi.org/10.1109/VLSIT.2014.6894361
30

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

31

Song, S.; Sim, Y.; Kim, S. Y.; Kim, J. H.; Oh, I.; Na, W.; Lee, D. H.; Wang, J.; Yan, S. L.; Liu, Y. N. et al. Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal-semiconductor contacts at the Schottky-Mott limit. Nat. Electron. 2020, 3, 207-215.

32

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.

33

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696-700.

34

Li, X. F.; Yang, L. M.; Si, M. W.; Li, S. C.; Huang, M. Q.; Ye, P. D.; Wu, Y. Q. Performance potential and limit of MoS2 transistors. Adv. Mater. 2015, 27, 1547-1552.

35

Fiori, G.; Szafranek, B. N.; Iannaccone, G.; Neumaier, D. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 2013, 103, 233509.

36

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983-1990.

37

Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 2018, 18, 4516-4522.

38

Du, H.; Kim, T.; Shin, S.; Kim, D.; Kim, H.; Sung, J. H.; Lee, M. J.; Seo, D. H.; Lee, S. W.; Jo, M. H. et al. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS2 field-effect transistors. Appl. Phys. Lett. 2015, 107, 233106.

39

Zhang, Z.; Yao, K.; Liu, Y.; Jin, C.; Liang, X.; Chen, Q.; Peng, L. M. Quantitative analysis of current-voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478-2489.

40

Gupta, S.; Rortais, F.; Ohshima, R.; Ando, Y.; Endo, T.; Miyata, Y.; Shiraishi, M. Monolayer MoS2 field effect transistor with low schottky barrier height with ferromagnetic metal contacts. Sci. Rep. 2019, 9, 17032.

41
Cheng, Q.; Ahmad, W.; Liu, G. H.; Wang, K. Y. Structural evolution of amorphous thin films of titanium dioxide. In Proceedings of the 2011 11th IEEE International Conference on Nanotechnology, Portland, 2011, pp 1598-1601.https://doi.org/10.1109/NANO.2011.6144514
42

Du, Y. C.; Yang, L. M.; Zhang, J. Y.; Liu, H.; Majumdar, K.; Kirsch, P. D.; Ye, P. D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett. 2014, 35, 599-601.

43

Sebastian, A.; Gallo, M. L.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529-544.

44

Ielmini, D.; Pedretti, G. Device and circuit architectures for in-memory computing. Adv. Intell. Syst. 2020, 2, 2000040.

45

Ielmini, D.; Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 2018, 1, 333-343.

46

Lee, S. H.; Zhu, X. J.; Lu, W. D. Nanoscale resistive switching devices for memory and computing applications. Nano Res. 2020, 13, 1228-1243.

47

Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251-257.

48

Leshno, M.; Lin, V. Y.; Pinkus, A.; Schocken, S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6, 861-867.

49

Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303-314.

50

Pei, J.; Deng, L.; Song, S.; Zhao, M. G.; Zhang, Y. H.; Wu, S.; Wang, G. R.; Zou, Z.; Wu, Z. Z.; He, W. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 2019, 572, 106-111.

51
Yan, B. N.; Yang, Q.; Chen, W. H.; Chang, K. T.; Su, J. W.; Hsu, C. H.; Li, S. H.; Lee, H. Y.; Sheu, S. S.; Ho, M. S. et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 2019, pp T86-T87.https://doi.org/10.23919/VLSIT.2019.8776485
52

Liang, W. H.; Yao, J. H.; Chen, A. L.; Lv, Q. Q.; Zanin, M.; Liu, J.; Wong, S.; Li, Y. M.; Lu, J. T.; Liang, H. R. et al. Early triage of critically ill COVID-19 patients using deep learning. Nat. Commun. 2020, 11, 3543.

Nano Research
Pages 4894-4900
Cite this article:
Guo Y, Sun Y, Tang A, et al. Field-effect at electrical contacts to two-dimensional materials. Nano Research, 2021, 14(12): 4894-4900. https://doi.org/10.1007/s12274-021-3670-y
Topics:

822

Views

14

Crossref

13

Web of Science

11

Scopus

1

CSCD

Altmetrics

Received: 30 March 2021
Revised: 04 June 2021
Accepted: 09 June 2021
Published: 28 July 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return