Graphical Abstract

Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm−2. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.
Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro- supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.
Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.
Tyagi, A.; Tripathi, K. M.; Gupta, R. K. Recent progress in micro-scale energy storage devices and future aspects. J. Mater. Chem. A 2015, 3, 22507–22541.
Wu, Z. S.; Feng, X. L.; Cheng, H. M. Recent advances in graphene- based planar micro-supercapacitors for on-chip energy storage. Nat. Sci. Rev. 2014, 1, 277–292.
Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
Westover, A. S.; Tian, J. W.; Bernath, S.; Oakes, L.; Edwards, R.; Shabab, F. N.; Chatterjee, S.; Anilkumar, A. V.; Pint, C. L. A multifunctional load-bearing solid-state supercapacitor. Nano Lett. 2014, 14, 3197–3202.
Wang, Y. F.; Yuan, H. M.; Zhu, Y. H.; Wang, Z. Q.; Hu, Z. W.; Xie, J. W.; Liao, C. Z.; Cheng, H.; Zhang, F. C.; Lu, Z. G. An all-in-one supercapacitor working at sub-zero temperatures. Sci. China Mater. 2020, 63, 660–666.
Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.
Jiang, Q.; Kurra, N.; Xia, C.; Alshareef, H. N. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy. Adv. Energy Mater. 2017, 7, 1601257.
Peng, Y. Y.; Akuzum, B.; Kurra, N.; Zhao, M. Q.; Alhabeb, M.; Anasori, B.; Kumbur, E. C.; Alshareef, H. N.; Ger, M. D.; Gogotsi, Y. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 2016, 9, 2847–2854.
Pu, X.; Liu, M. M.; Li, L. X.; Han, S. C.; Li, X. L.; Jiang, C. Y.; Du, C. H.; Luo, J. J.; Hu, W. G.; Wang, Z. L. Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601254.
Cai, J. G.; Lv, C.; Hu, C.; Luo, J. H.; Liu, S.; Song, J. F.; Shi, Y.; Chen, C. G.; Zhang, Z.; Ogawa, S. et al. Laser direct writing of heteroatom-doped porous carbon for high-performance micro- supercapacitors. Energy Storage Mater. 2020, 25, 404–415.
Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J. et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 2020, 24, 336–342.
Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.
Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.
Peng, M. W.; Shi, D. L.; Sun, Y. H.; Cheng, J.; Zhao, B.; Xie, Y. M.; Zhang, J. C.; Guo, W.; Jia, Z.; Liang, Z. Q. et al. 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 2020, 32, 1908201.
Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A. N.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B. et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 2020, 32, 1906652.
Ambrosi, A.; Pumera, M. Self-contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 2018, 28, 1700655.
Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755.
Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783–2810.
Egorov, V.; Gulzar, U.; Zhang, Y.; Breen, S.; O'Dwyer, C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 2020, 32, 2000556.
Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. N.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.
Jiang, Y.; Shao, H. B.; Li, C. X.; Xu, T.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Versatile graphene oxide putty-like material. Adv. Mater. 2016, 28, 10287–10292.
Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.
Lacey, S. D.; Kirsch, D. J.; Li, Y. J.; Morgenstern, J. T.; Zarket, B. C.; Yao, Y. G.; Dai, J. Q.; Garcia, L. Q.; Liu, B. Y.; Gao, T. T. et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 2018, 30, 1705651.
Li, W. B.; Li, Y. H.; Su, M.; An, B. X.; Liu, J.; Su, D.; Li, L. H.; Li, F. Y.; Song, Y. L. Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 2017, 5, 16281–16288.
Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.
Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.
Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.
Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.
Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.
Wang, Z. S.; Zhang, Q. E.; Long, S. C.; Luo, Y. X.; Yu, P. K.; Tan, Z. B.; Bai, J.; Qu, B. H.; Yang, Y.; Shi, J. et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high- performance planar supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 10437–10444.
Wei, N.; Yu, L. H.; Sun, Z. T.; Song, Y. Z.; Wang, M. L.; Tian, Z. N.; Xia, Y.; Cai, J. S.; Li, Y. Y.; Zhao, L. et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517–7526.
Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.
Chen, C. L.; Jiang, J. M.; He, W. J.; Lei, W.; Hao, Q. L.; Zhang, X. G. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 2020, 30, 1909469.
Gao, T. T.; Zhou, Z.; Yu, J. Y.; Zhao, J.; Wang, G. L.; Cao, D. X.; Ding, B.; Li, Y. J. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 2019, 9, 1802578.
Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.
Qiao, Y.; Liu, Y.; Chen, C. J.; Xie, H.; Yao, Y. G.; He, S. M.; Ping, W. W.; Liu, B. Y.; Hu, L. B. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.
Tang, X. W.; Zhu, C. L.; Cheng, D. D.; Zhou, H.; Liu, X. H.; Xie, P. W.; Zhao, Q. B.; Zhang, D.; Fan, T. X. Architectured leaf-inspired Ni0.33Co0.66S2/graphene aerogels via 3D printing for high-performance energy storage. Adv. Funct. Mater. 2018, 28, 1805057.
Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876.
Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro- supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.
Shen, K.; Li, B.; Yang, S. B. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 2020, 24, 670–675.
Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.
Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.
Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L. et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.
Lin, X. T.; Wang, J. W.; Gao, X. J.; Wang, S. Z.; Sun, Q.; Luo, J.; Zhao, C. T.; Zhao, Y.; Yang, X. F.; Wang, C. H. et al. 3D printing of free-standing "O2 breathable" air electrodes for high-capacity and long-life Na–O2 batteries. Chem. Mater. 2020, 32, 3018–3027.
Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.
Zhang, J.; Li, X. L.; Fan, S.; Huang, S. Z.; Yan, D.; Liu, L.; Alvarado, P. V. Y.; Yang, H. Y. 3D-printed functional electrodes towards Zn-air batteries. Mater. Today Energy 2020, 16, 100407.
Li, H. P.; Liang, J. J. Recent development of printed micro- supercapacitors: Printable materials, printing technologies, and perspectives. Adv. Mater. 2020, 32, 1805864.
Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762.
Shi, R. Y.; Han, C. P.; Duan, H.; Xu, L.; Zhou, D.; Li, H. F.; Li, J. Q.; Kang, F. Y.; Li, B. H.; Wang, G. X. Redox-active organic sodium anthraquinone-2-sulfonate (AQS) anchored on reduced graphene oxide for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1802088.
Xu, L.; Shi, R. Y.; Li, H. F.; Han, C. P.; Wu, M. Y.; Wong, C. P.; Kang, F. Y.; Li, B. H. Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 2018, 127, 459–468.
Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.
Zhang, Y.; Tao, B. L.; Xing, W.; Zhang, L.; Xue, Q. Z.; Yan, Z. F. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance. Nanoscale 2016, 8, 7889–7898.
Li, S.; Zhao, C.; Shu, K. W.; Wang, C. Y.; Guo, Z. P.; Wallace, G. G.; Liu, H. K. Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 2014, 79, 554–562.
Ren, Y. M.; Yu, C. B.; Chen, Z. H.; Xu, Y. X. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. 2021, 14, 2023–2036.
Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.
Yang, C. M.; Weidenthaler, C.; Spliethoff, B.; Mayanna, M.; Schüth, F. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem. Mater. 2005, 17, 355–358.
Amarnath, C. A.; Hong, C. E.; Kim, N. H.; Ku, B. C.; Kuila, T.; Lee, J. H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 2011, 49, 3497–3502.
Gong, F.; Xu, X.; Zhou, G.; Wang, Z. S. Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 546–552.
Lu, X. J.; Dou, H.; Yuan, C. Z.; Yang, S. D.; Hao, L.; Zhang, F.; Shen, L. F.; Zhang, L. J.; Zhang, X. G. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J. Power Sources 2012, 197, 319–324.
Wang, L. C.; Zhang, C. G.; Jiao, X.; Yuan, Z. H. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 2019, 12, 1129–1137.
Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 2009, 19, 3832–3837.
Bora, C.; Dolui, S. K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 53, 923–932.
Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.
Jiang, Y.; Hu, C. G.; Cheng, H. H.; Li, C. X.; Xu, T.; Zhao, Y.; Shao, H. B.; Qu, L. T. Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators. ACS Nano 2016, 10, 4735–4741.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.
Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30, 1706435.
Miao, J. L.; Liu, H. H.; Li, Y. B.; Zhang, X. X. Biodegradable transparent substrate based on edible starch-chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 2018, 10, 23037–23047.
Yang, Y. C.; Kim, N. D.; Varshney, V.; Sihn, S.; Li, Y. L.; Roy, A. K.; Tour, J. M.; Lou, J. In situ mechanical investigation of carbon nanotube-graphene junction in three-dimensional carbon nanostructures. Nanoscale 2017, 9, 2916–2924.
You, B.; Wang, L. L.; Yao, L.; Yang, J. Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun. 2013, 49, 5016–5018.
Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.
Xiao, H.; Wu, Z. S.; Chen, L.; Zhou, F.; Zheng, S. H.; Ren, W. C.; Cheng, H. M.; Bao, X. H. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 2017, 11, 7284–7292.
Zheng, S. H.; Li, Z. L.; Wu, Z. S.; Dong, Y. F.; Zhou, F.; Wang, S.; Fu, Q.; Sun, C. L.; Guo, L. W.; Bao, X. H. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 2017, 11, 4009–4016.
Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.
Shao, Y. L.; Li, J. M.; Li, Y. G.; Wang, H. Z.; Zhang, Q. H.; Kaner, R. B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 2017, 4, 1145–1150.
Wang, S.; Wu, Z. S.; Zheng, S. H.; Zhou, F.; Sun, C. L.; Cheng, H. M.; Bao, X. H. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 2017, 11, 4283–4291.
Wu, Z. S.; Tan, Y. Z.; Zheng, S. H.; Wang, S.; Parvez, K.; Qin, J. Q.; Shi, X. Y.; Sun, C. L.; Bao, X. H.; Feng, X. L. et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur- annulated nanographene for ultrahigh volumetric capacitance micro- supercapacitors. J. Am. Chem. Soc. 2017, 139, 4506–4512.
Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.
Lee, G.; Kang, S. K.; Won, S. M.; Gutruf, P.; Jeong, Y. R.; Koo, J.; Lee, S. S.; Rogers, J. A.; Ha, J. S. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater. 2017, 7, 1700157.