AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Planar-symmetry-breaking induced antisymmetric magnetoresistance in van der Waals ferromagnet Fe3GeTe2

Ping Liu1,2Caixing Liu3Zhi Wang1Meng Huang1Guojing Hu1Junxiang Xiang1Chao Feng1Chen Chen1Zongwei Ma3Xudong Cui4Hualing Zeng1Zhigao Sheng3( )Yalin Lu1,5( )Gen Yin6Gong Chen6( )Kai Liu6Bin Xiang1,5( )
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science & Engineering, CAS Key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
Sichuan New Materials Research Center, Institute of Chemical Materials, CAEP, Chengdu 610200, China
Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
Physics Department, Georgetown University, Washington, DC 20057, USA
Show Author Information

Graphical Abstract

Abstract

Recently discovered magnetic van der Waals (vdW) materials provide an ideal platform to explore low-dimensional magnetism and spin transport. Its vdW interaction nature opens up unprecedented opportunities to build vertically stacked heterostructures with novel properties and functionalities. By engineering the planar structure as an alternative degree of freedom, herein we demonstrate an antisymmetric magnetoresistance (MR) in a vdW Fe3GeTe2 flake with a step terrace that breaks the planar symmetry. This antisymmetric MR originates from a sign change of the anomalous Hall effect and the continuity of the current transport near the boundary of magnetic domains at the step edge. A repeatable domain wall due to the unsynchronized magnetization switching is responsible for this sign change. Such interpretation is supported by the observation of field-dependent domain switching, and the step thickness, temperature, and magnetic field orientation dependent MR. This work opens up new opportunities to encode magnetic information by controlling the planar domain structures in vdW magnets.

References

1

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

2

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

3

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

4

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

5

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

6

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

7

Wang, Z.; Zhang, T. Y.; Ding, M.; Dong, B. J.; Li, Y. X.; Chen, M. L.; Li, X. X.; Huang, J. Q.; Wang, H. W.; Zhao, X. T. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 2018, 13, 554–559.

8

Li, T. X.; Jiang, S. W.; Sivadas, N.; Wang, Z. F.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

9

Liu, S. S.; Yuan, X.; Zou, Y. C.; Sheng, Y.; Huang, C.; Zhang, E. Z.; Ling, J. W.; Liu, Y. W.; Wang, W. Y.; Zhang, C. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy. npj 2D Mater. Appl. 2017, 1, 30.

10

Chen, W. J.; Sun, Z. Y.; Wang. Z. J.; Gu. L. H.; Xu. X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 2019, 366, 983–987.

11

Ding, B.; Li, Z. F.; Xu, G. Z.; Li, H.; Hou, Z. P.; Liu, E. K.; Xi, X. K.; Xu, F.; Yao, Y.; Wang, W. H. Observation of magnetic skyrmion bubbles in a van der Waals ferromagnet Fe3GeTe2. Nano Lett. 2020, 20, 868–873.

12

Li, Q.; Yang, M. M.; Gong, C.; Chopdekar, R. V.; N’Diaye, A. T.; Turner, J.; Chen, G.; Scholl, A.; Shafer, P.; Arenholz, E. et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 2018, 18, 5974–5980.

13

Song, T. C.; Cai, X. H.; Tu, M. W. Y.; Zhang, X. O.; Huang, B.; Wilson, N. P.; Seyler, K. L.; Zhu, L.; Taniguchi, T.; Watanabe, K. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214–1218.

14

Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

15

Zhong, D.; Seyler, K. L.; Linpeng, X.; Wilson, N. P.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Fu, K. M. C.; Xiao, D.; Yao, W. et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol. 2020, 15, 187–191.

16

Huang, M.; Xiang, J. X.; Feng, C.; Huang, H. L.; Liu, P.; Wu, Y. F.; N’Diaye, A. T.; Chen, G.; Liang, J. H.; Yang, H. X. et al. Direct evidence of spin transfer torque on two-dimensional Cobalt-doped MoS2 ferromagnetic material. ACS Appl. Electron. Mater. 2020, 2, 1497–1504.

17

Wang, X.; Tang, J.; Xia, X. X.; He, C. L.; Zhang, J. W.; Liu, Y. Z.; Wan, C. H.; Fang, C.; Guo, C. Y.; Yang, W. L. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 2019, 5, eaaw8904.

18

Alghamdi, M.; Lohmann, M.; Li, J. X.; Jothi, P. R.; Shao, Q. M.; Aldosary, M.; Su, T.; Fokwa, B. P. T.; Shi, J. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 2019, 19, 4400–4405.

19

Wu, Y. Y.; Zhang, S. F.; Zhang, J. W.; Wang, W.; Zhu, Y. L.; Hu, J.; Yin, G.; Wong, K.; Fang, C.; Wan, C. H. et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nat. Commun. 2020, 11, 3860.

20

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

21

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

22

Gilbert, D. A.; Maranville, B. B.; Balk, A. L.; Kirby, B. J.; Fischer, P.; Pierce, D. T.; Unguris, J.; Borchers, J. A.; Liu, K. Realization of ground-state artificial skyrmion lattices at room temperature. Nat. Commun. 2015, 6, 8462.

23

Li, J.; Tan, A.; Moon, K. W.; Doran, A.; Marcus, M. A.; Young, A. T.; Arenholz, E.; Ma, S.; Yang, R. F.; Hwang, C. et al. Tailoring the topology of an artificial magnetic skyrmion. Nat. Commun. 2014, 5, 4704.

24

Sun, L.; Cao, R. X.; Miao, B. F.; Feng, Z.; You, B.; Wu, D.; Zhang, W.; Hu, A.; Ding, H. F. Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. Phys. Rev. Lett. 2013, 110, 167201.

25

Iwasaki, J.; Mochizuki, M.; Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 2013, 8, 742–747.

26

Franken, J. H.; Swagten, H. J. M.; Koopmans, B. Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nat. Nanotechnol. 2012, 7, 499–503.

27

Yang, H. X.; Chen, G.; Cotta, A. A. C.; N'Diaye, A. T.; Nikolaev, S. A.; Soares, E. A.; Macedo, W. A. A.; Liu, K.; Schmid, A. K.; Fert, A. et al. Significant Dzyaloshinskii-Moriya interaction at graphene-ferromagnet interfaces due to the Rashba effect. Nat. Mater. 2018, 17, 605–609.

28

Albarakati, S.; Tan, C.; Chen, Z. J.; Partridge, J. G.; Zheng, G. L.; Farrar, L.; Mayes, E. L. H.; Field, M. R.; Lee, C.; Wang, Y. H. et al. Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. Sci. Adv. 2019, 5, eaaw0409.

29

León-Brito, N.; Bauer, E. D.; Ronning, F.; Thompson, J. D.; Movshovich, R. Magnetic microstructure and magnetic properties of uniaxial itinerant ferromagnet Fe3GeTe2. J. Appl. Phys. 2016, 120, 083903.

30

Deiseroth, H. J.; Aleksandrov, K.; Reiner, C.; Kienle, L.; Kremer, R. K. Fe3GeTe2 and Ni3GeTe2–Two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 2006, 1561–1567.

31

Li, P.; Zhang, L. T.; Mi, W. B.; Jiang, E. Y.; Bai, H. L. Origin of the butterfly-shaped magnetoresistance in reactive sputtered epitaxial Fe3O4 films. J. Appl. Phys. 2009, 106, 033908.

32

Niu, J. J.; Yan, B. M.; Ji, Q. Q.; Liu, Z. F.; Li, M. Q.; Gao, P.; Zhang, Y. F.; Yu, D. P.; Wu, X. S. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys. Rev. B 2017, 96, 075402.

33

Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. G. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.

34

Yamanouchi, M.; Chiba, D.; Matsukura, F.; Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 2004, 428, 539–542.

35

Schumacher, H. W.; Ravelosona, D.; Cayssol, F.; Wunderlich, J.; Chappert, C.; Mathet, V.; Thiaville, A.; Jamet, J. P.; Ferré, J.; Haug, R. J. Control of the magnetic domain wall propagation in Pt/Co/Pt ultra thin films using direct mechanical AFM lithography. J. Magn. Magn. Mater. 2002, 240, 53–56.

36

Partin, D. L.; Karnezos, M.; deMenezes, L. C.; Berger, L. Nonuniform current distribution in the neighborhood of a ferromagnetic domain wall in cobalt at 4.2 K. J. Appl. Phys. 1974, 45, 1852–1859.

37

Kim, K.; Seo, J.; Lee, E.; Ko, K. T.; Kim, B. S.; Jang, B. G.; Ok, J. M.; Lee, J.; Jo, Y. J.; Kang, W. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 2018, 17, 794–799.

38

Cheng, X. M.; Urazhdin, S.; Tchernyshyov, O.; Chien, C. L.; Nikitenko, V. I.; Shapiro, A. J.; Shull, R. D. Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy. Phys. Rev. Lett. 2005, 94, 017203.

39

Tang, H. X.; Roukes, M. L. Electrical transport across an individual magnetic domain wall in (Ga, Mn) As microdevices. Phys. Rev. B 2004, 70, 205213.

40

Xiang, G.; Samarth, N. Theoretical analysis of the influence of magnetic domain walls on longitudinal and transverse magnetoresistance in tensile strained (Ga, Mn) As epilayers. Phys. Rev. B 2007, 76, 054440.

41

Bate, R. T.; Bell, J. C.; Beer, A. C. Influence of magnetoconductivity discontinuities on galvanomagnetic effects in Indium Antimonide. J. Appl. Phys. 1961, 32, 806–814.

42

Suzuki, T.; Chisnell, R.; Devarakonda, A.; Liu, Y. T.; Feng, W.; Xiao, D.; Lynn, J. W.; Checkelsky, J. G. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nat. Phys. 2016, 12, 1119–1123.

Nano Research
Pages 2531-2536
Cite this article:
Liu P, Liu C, Wang Z, et al. Planar-symmetry-breaking induced antisymmetric magnetoresistance in van der Waals ferromagnet Fe3GeTe2. Nano Research, 2022, 15(3): 2531-2536. https://doi.org/10.1007/s12274-021-3826-9
Topics:

865

Views

8

Crossref

9

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 30 June 2021
Revised: 15 August 2021
Accepted: 18 August 2021
Published: 30 September 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return