AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction

Qun Li1,§Kaisi Liu1,§Siwei Gui3Jiabin Wu1Xiaogang Li3Zaifang Li2( )Hongrun Jin1Hui Yang3( )Zhimi Hu1Wenxi Liang1( )Liang Huang1( )
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China
State Key Laboratory of Material Processing and Die & Mold Technology, Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

§ Qun Li and Kaisi Liu contributed equally to this work.

Show Author Information

Graphical Abstract

The cobalt (Co) doped CaMn3O6 nanowires (NWs) exhibit excellent performance for hydrogen evolution reaction (HER) with a small onset overpotential of 70 mV, and an overpotential of 140 mV at the current density of 10 mA·cm−2.

Abstract

The development of earth-abundant-metal-based electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) is crucial for the clean and renewable energy application. Herein, we report a molten-salt method to synthesize Co-doped CaMn3O6 (CMO) nanowires (NWs) as effective electrocatalyst for HER. The as-obtained CaMn3−xCoxO6 (CMCO) exhibits a small onset overpotential of 70 mV, a required overpotential of 140 mV at a current density of 10 mA·cm−2, a Tafel slope of 39 mV·dec−1 in 0.1 M HClO4, and a satisfying long-term stability. Experimental characterizations combined with density functional theory (DFT) calculations demonstrate that the obtained HER performance can be attributed to the Co-doping which altered CMO’s surface electronic structures and properties. Considering the simplicity of synthesis route and the abundance of the pertinent elements, the synthesized CMCO shows a promising prospect as a candidate for the development of earth-abundant, metal-based, and cost-effective electrocatalyst with superior HER activity. Our results also establish a strategy of rational design and construction of novel electrocatalyst toward HER by tailoring band structures of transition metal oxides (TMOs).

Electronic Supplementary Material

Download File(s)
12274_2021_3879_MOESM1_ESM.pdf (1.4 MB)

References

1

Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

2

Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

3

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

4

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

5

Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

6

Li, S. W.; Yang, C.; Yin, Z.; Yang, H. J.; Chen, Y. F.; Lin, L. L.; Li, M. Z.; Li, W. Z.; Hu, G.; Ma, D. Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction. Nano Res. 2017, 10, 1322–1328.

7

Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52–65.

8

Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

9

Zhu, B. J.; Zou, R. Q.; Xu, Q. Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801193.

10

Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

11
Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou J.; Gogotsi, Y.; Huang L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res., in press, DOI: 10.1007/s12274-021-3513-x.https://doi.org/10.1007/s12274-021-3513-x
12

Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely-populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

13

Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

14

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

15

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

16

Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

17

Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

18

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719.

19

Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

20

Wang, J. M.; Guo, L. L.; Xu, L.; Zeng, P.; Li, R. J.; Peng, T. Y. Z-scheme photocatalyst based on porphyrin derivative decorated few-layer BiVO4 nanosheets for efficient visible-light-driven overall water splitting. Nano Res. 2021, 14, 1294–1304.

21

Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

22

Hadermann, J.; Abakumov, A. M.; Gillie, L. J.; Martin, C.; Hervieu, M. Coupled cation and charge ordering in the CaMn3O6 tunnel structure. Chem. Mater. 2006, 18, 5530–5536.

23

Fukabori, A.; Awaka, J.; Takahashi, Y.; Kijima, N.; Hayakawa, H.; Akimoto, J. Single crystal growth of CaMn2O4 and CaMn3O6 in molten CaCl2. Chem. Lett. 2008, 37, 978–979.

24

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V,; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

25

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

26

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. D. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

27

Xiong, Q. Z.; Zhang, X.; Cheng, Q. P.; Liu, G. Q.; Xu, G.; Li, J. L.; Ye, X. X.; Gao, H. J. Highly selective electrocatalytic Cl oxidation reaction by oxygen-modified cobalt nanoparticles immobilized carbon nanofibers for coupling with brine water remediation and H2 production. Nano Res. 2021, 14, 1443–1449.

28

Huang, B. B.; Chen, L. Y.; Wang, Y.; Ouyang, L. Z.; Ye, J. S. Paragenesis of palladium-cobalt nanoparticle in nitrogen-rich carbon nanotubes as a bifunctional electrocatalyst for hydrogen-evolution reaction and oxygen-reduction reaction. Chem.—Eur. J. 2017, 23, 7710–7718.

29

Huang, N.; Yang, L.; Zhang, M. Y.; Yan, S. F.; Ding, Y. Y.; Sun, P. P.; Sun, X. H. Cobalt-embedded N-doped carbon arrays derived in situ as trifunctional catalyst toward hydrogen and oxygen evolution, and oxygen reduction. ChemElectroChem 2019, 6, 4522–4532.

30

Kim, T. S.; Song, H. J.; Dar, M. A.; Shim, H. W.; Kim, D. W. Thermally reduced rGO-wrapped CoP/Co2P hybrid microflower as an electrocatalyst for hydrogen evolution reaction. J. Am. Ceram. Soc. 2018, 101, 3749–3754.

31

Yu, J. Y.; Huang, K.; Wu, H. Y.; Feng, Y.; Wang, L.; Tang, Z.; Zhang, L. Exchange bias and magnetic properties induced by intrinsic structural distortion in CaMn3O6 nanoribbons. Appl. Phys. Lett. 2014, 104, 022407.

32

Najafpour, M. M. Mixed-valence manganese calcium oxides as efficient catalysts for water oxidation. Dalton Trans. 2011, 40, 3793–3795.

33

Yang, Y.; Fei, H. L.; Ruan, G. D.; Tour, J. M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175–3180.

34

Russell, A. E. Electrocatalysis: Theory and experiment at the interface. Preface. Faraday Discuss. 2008, 140, 9–10.

35

Sun, H. N.; Xu, X. M.; Hu, Z. W.; Tjeng, L. H.; Zhao, J.; Zhang, Q.; Lin, H. J.; Chen, C. T.; Chan, T. S.; Zhou, W. et al. Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. J. Mater. Chem. A 2019, 7, 9924–9932.

36

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

37

Zhang, H. J.; Guan, D. Q.; Gao, X. C.; Yu, J.; Chen, G.; Zhou, W.; Shao, Z. P. Morphology, crystal structure and electronic state one-step co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. J. Mater. Chem. A 2019, 7, 19228–19233.

38

Qiao, R. M.; Chin, T.; Harris, S. J.; Yan, S. S.; Yang, W. L. Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides. Curr. Appl. Phys. 2013, 13, 544–548.

39

Suntivich, J.; Hong, W. T.; Lee, Y. L.; Rondinelli, J. M.; Yang, W. L.; Goodenough, J. B.; Dabrowski, B.; Freeland, J. W.; Shao-Horn, Y. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 2014, 118, 1856–1863.

40

Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448.

41

Grinberg, I.; West, D. V.; Torres, M.; Gou, G. Y.; Stein, D. M.; Wu, L. Y.; Chen, G. N.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512.

42

Guan, D.; Zhou, J.; Huang, Y. C.; Dong, C. L.; Wang, J. Q.; Zhou, W.; Shao, Z. P. Screening highly active perovskites for hydrogen-evolving reaction via unifying ionic electronegativity descriptor. Nat. Commun. 2019, 10, 1–8.

43

Guan, D. Q.; Zhou, J.; Hu, Z. W.; Zhou, W.; Xu, X. M.; Zhong, Y. J.; Liu, B.; Chen, Y. H.; Xu, M. G.; Lin, H. J. et al. Searching general sufficient-and-necessary conditions for ultrafast hydrogen-evolving electrocatalysis. Adv. Funct. Mater. 2019, 29, 1900704.

44

Bennett, J. W.; Grinberg, I.; Rappe, A. M. New highly polar semiconductor ferroelectrics through d8 Cation-O vacancy substitution into PbTiO3: A theoretical study. J. Am. Chem. Soc. 2008, 130, 17409–17412.

45

Li, Q.; Wu J. B.; Wu T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002.

46

Dong, H. F.; Liu, C. H.; Ye, H. T.; Hu, L. P.; Fugetsu, B.; Dai, W. H.; Cao, Y.; Qi, X. Q.; Lu, H. T.; Zhang, X. J. Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. Sci. Rep. 2015, 5, 17542.

47

Greeley, J.; Nørskov, J. K. Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surf. Sci. 2007, 601, 1590–1598.

48

Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

49

Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

Nano Research
Pages 2870-2876
Cite this article:
Li Q, Liu K, Gui S, et al. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano Research, 2022, 15(4): 2870-2876. https://doi.org/10.1007/s12274-021-3879-9
Topics:

977

Views

7

Crossref

7

Web of Science

8

Scopus

1

CSCD

Altmetrics

Received: 01 July 2021
Revised: 06 September 2021
Accepted: 09 September 2021
Published: 20 October 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return